半线性椭圆方程的Dirichlet-Neumann交替方法的收敛性

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Emil Engström
{"title":"半线性椭圆方程的Dirichlet-Neumann交替方法的收敛性","authors":"Emil Engström","doi":"10.1137/24m1703550","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2133-2154, October 2025. <br/> Abstract. The Dirichlet–Neumann alternating method is a common domain decomposition method for nonoverlapping domain decompositions without cross-points, and the method has been studied extensively for linear elliptic equations. However, for nonlinear elliptic equations, there are only convergence results for some specific cases in one spatial dimension. The aim of this manuscript is therefore to prove that the Dirichlet–Neumann alternating method converges for a class of semilinear elliptic equations on Lipschitz continuous domains in two and three spatial dimensions. This is achieved by first proving a new result on the convergence of nonlinear iterations in Hilbert spaces and then applying this result to the Steklov–Poincaré formulation of the Dirichlet–Neumann alternating method.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"58 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence of the Dirichlet–Neumann Alternating Method for Semilinear Elliptic Equations\",\"authors\":\"Emil Engström\",\"doi\":\"10.1137/24m1703550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2133-2154, October 2025. <br/> Abstract. The Dirichlet–Neumann alternating method is a common domain decomposition method for nonoverlapping domain decompositions without cross-points, and the method has been studied extensively for linear elliptic equations. However, for nonlinear elliptic equations, there are only convergence results for some specific cases in one spatial dimension. The aim of this manuscript is therefore to prove that the Dirichlet–Neumann alternating method converges for a class of semilinear elliptic equations on Lipschitz continuous domains in two and three spatial dimensions. This is achieved by first proving a new result on the convergence of nonlinear iterations in Hilbert spaces and then applying this result to the Steklov–Poincaré formulation of the Dirichlet–Neumann alternating method.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1703550\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1703550","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM数值分析杂志,第63卷,第5期,2133-2154页,2025年10月。摘要。Dirichlet-Neumann交替法是求解无交叉点无重叠区域分解的常用方法,该方法在求解线性椭圆型方程时得到了广泛的研究。然而,对于非线性椭圆型方程,只有在一个空间维度上的某些特定情况下才有收敛结果。因此,本文的目的是证明Dirichlet-Neumann交替方法在二维和三维空间的Lipschitz连续域上收敛于一类半线性椭圆方程。这是通过首先证明Hilbert空间中非线性迭代的收敛性的一个新结果,然后将该结果应用于Dirichlet-Neumann交替方法的steklov - poincar公式来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of the Dirichlet–Neumann Alternating Method for Semilinear Elliptic Equations
SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2133-2154, October 2025.
Abstract. The Dirichlet–Neumann alternating method is a common domain decomposition method for nonoverlapping domain decompositions without cross-points, and the method has been studied extensively for linear elliptic equations. However, for nonlinear elliptic equations, there are only convergence results for some specific cases in one spatial dimension. The aim of this manuscript is therefore to prove that the Dirichlet–Neumann alternating method converges for a class of semilinear elliptic equations on Lipschitz continuous domains in two and three spatial dimensions. This is achieved by first proving a new result on the convergence of nonlinear iterations in Hilbert spaces and then applying this result to the Steklov–Poincaré formulation of the Dirichlet–Neumann alternating method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信