紫外脉冲激光退火技术在碳纳米管纤维内的聚结

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Zachary T. Piontkowski, Zoe A. Lipton, Simranjit Grewal, Anthony E. McDonald, Mitchell A. Trafford, Wyatt L. Hodges, Emma Y−S Chu, Matteo Pasquali, Michael P. Siegal, Simeon J. Gilbert, Rachel I. Martin
{"title":"紫外脉冲激光退火技术在碳纳米管纤维内的聚结","authors":"Zachary T. Piontkowski, Zoe A. Lipton, Simranjit Grewal, Anthony E. McDonald, Mitchell A. Trafford, Wyatt L. Hodges, Emma Y−S Chu, Matteo Pasquali, Michael P. Siegal, Simeon J. Gilbert, Rachel I. Martin","doi":"10.1021/acs.jpcc.5c05657","DOIUrl":null,"url":null,"abstract":"Carbon nanotube fibers (CNTFs), composed of numerous aligned CNTs, show promise for a range of industries and applications based on the extraordinary thermal and electrical conductivities of individual CNTs. However, poor interfacial junctions between adjacent CNTs hinder phonon and electron transport, resulting in CNTFs with significantly lower conductivities than individual CNTs. Coalescing smaller-diameter CNTs into larger-diameter CNTs may create a more integrated network with reduced junction resistances, thereby improving interfacial junctions and, thus, transport properties. In this work, we employ ultraviolet pulsed laser annealing (UV-PLA) for targeted heating of CNTFs to induce coalescence. Raman spectroscopy is used to quantify CNT coalescence by analyzing radial breathing modes (RBMs), and the G- (graphitic) and D- (disordered) peaks. Our findings indicate that CNT coalescence can be induced within microseconds using UV-PLA. UV-PLA-coalesced CNTFs were shown to have exceptional thermal conductivities of up to 777 W/mK and electrical conductivities of up to 13.4 MS/m, after redoping.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"91 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNT Coalescence within CNT Fibers via Ultraviolet Pulsed Laser Annealing\",\"authors\":\"Zachary T. Piontkowski, Zoe A. Lipton, Simranjit Grewal, Anthony E. McDonald, Mitchell A. Trafford, Wyatt L. Hodges, Emma Y−S Chu, Matteo Pasquali, Michael P. Siegal, Simeon J. Gilbert, Rachel I. Martin\",\"doi\":\"10.1021/acs.jpcc.5c05657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon nanotube fibers (CNTFs), composed of numerous aligned CNTs, show promise for a range of industries and applications based on the extraordinary thermal and electrical conductivities of individual CNTs. However, poor interfacial junctions between adjacent CNTs hinder phonon and electron transport, resulting in CNTFs with significantly lower conductivities than individual CNTs. Coalescing smaller-diameter CNTs into larger-diameter CNTs may create a more integrated network with reduced junction resistances, thereby improving interfacial junctions and, thus, transport properties. In this work, we employ ultraviolet pulsed laser annealing (UV-PLA) for targeted heating of CNTFs to induce coalescence. Raman spectroscopy is used to quantify CNT coalescence by analyzing radial breathing modes (RBMs), and the G- (graphitic) and D- (disordered) peaks. Our findings indicate that CNT coalescence can be induced within microseconds using UV-PLA. UV-PLA-coalesced CNTFs were shown to have exceptional thermal conductivities of up to 777 W/mK and electrical conductivities of up to 13.4 MS/m, after redoping.\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.5c05657\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.5c05657","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

碳纳米管纤维(CNTFs)由许多排列整齐的碳纳米管组成,基于单个碳纳米管非凡的导热性和导电性,在一系列工业和应用中显示出前景。然而,相邻碳纳米管之间不良的界面连接阻碍了声子和电子的传递,导致碳纳米管的电导率明显低于单个碳纳米管。将小直径的碳纳米管聚结成大直径的碳纳米管可以形成一个更完整的网络,降低结电阻,从而改善界面结,从而改善传输性能。在这项工作中,我们采用紫外脉冲激光退火(UV-PLA)对cntf进行定向加热以诱导聚结。拉曼光谱通过分析径向呼吸模式(rbm)和G-(石墨)和D-(无序)峰来量化碳纳米管聚结。我们的研究结果表明,使用UV-PLA可以在微秒内诱导碳纳米管聚结。uv - pla聚结cntf在复染后具有高达777 W/mK的优异导热性和高达13.4 MS/m的导电性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CNT Coalescence within CNT Fibers via Ultraviolet Pulsed Laser Annealing

CNT Coalescence within CNT Fibers via Ultraviolet Pulsed Laser Annealing
Carbon nanotube fibers (CNTFs), composed of numerous aligned CNTs, show promise for a range of industries and applications based on the extraordinary thermal and electrical conductivities of individual CNTs. However, poor interfacial junctions between adjacent CNTs hinder phonon and electron transport, resulting in CNTFs with significantly lower conductivities than individual CNTs. Coalescing smaller-diameter CNTs into larger-diameter CNTs may create a more integrated network with reduced junction resistances, thereby improving interfacial junctions and, thus, transport properties. In this work, we employ ultraviolet pulsed laser annealing (UV-PLA) for targeted heating of CNTFs to induce coalescence. Raman spectroscopy is used to quantify CNT coalescence by analyzing radial breathing modes (RBMs), and the G- (graphitic) and D- (disordered) peaks. Our findings indicate that CNT coalescence can be induced within microseconds using UV-PLA. UV-PLA-coalesced CNTFs were shown to have exceptional thermal conductivities of up to 777 W/mK and electrical conductivities of up to 13.4 MS/m, after redoping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信