LMADCNV:一种基于局部特征和MAD的NGS数据CNV检测方法。

Xiaojun Ge, Shaojie Cheng, Kang Liu, Kun Xie, Yang Guo
{"title":"LMADCNV:一种基于局部特征和MAD的NGS数据CNV检测方法。","authors":"Xiaojun Ge, Shaojie Cheng, Kang Liu, Kun Xie, Yang Guo","doi":"10.1109/TCBBIO.2025.3620990","DOIUrl":null,"url":null,"abstract":"<p><p>Copy number variations (CNVs) are a type of structural variation in the genome that impact gene dosage, with significant implications for both normal phenotypic variability and susceptibility to disease. The existing copy number variation detection methods have unstable sensitivity in data with different coverage depths, and cannot identify shorter copy number variation fragments. In this context, we introduce a new method called LMADCNV, specifically designed for detecting CNVs in single-sample data from next-generation sequencing (NGS). LMADCNV employs local features constructed via a cluster partitioning strategy, in conjunction with an anomaly scoring mechanism predicated on median absolute deviation, to facilitate the detection of CNVs. This innovative approach prudently leverages the positional correlation inherent in read depth (RD) data to achieve increased sensitivity without a significant loss in precision. Empirical validation through simulation and real-sample experiments confirms the superiority of LMADCNV over other seven CNV detection methods. LMADCNV not only offers a novel perspective for extracting local features but also shows promise as a robust and effective tool for CNV detection.</p>","PeriodicalId":520987,"journal":{"name":"IEEE transactions on computational biology and bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LMADCNV: A CNV Detection Method Based on Local Features and MAD for NGS Data.\",\"authors\":\"Xiaojun Ge, Shaojie Cheng, Kang Liu, Kun Xie, Yang Guo\",\"doi\":\"10.1109/TCBBIO.2025.3620990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Copy number variations (CNVs) are a type of structural variation in the genome that impact gene dosage, with significant implications for both normal phenotypic variability and susceptibility to disease. The existing copy number variation detection methods have unstable sensitivity in data with different coverage depths, and cannot identify shorter copy number variation fragments. In this context, we introduce a new method called LMADCNV, specifically designed for detecting CNVs in single-sample data from next-generation sequencing (NGS). LMADCNV employs local features constructed via a cluster partitioning strategy, in conjunction with an anomaly scoring mechanism predicated on median absolute deviation, to facilitate the detection of CNVs. This innovative approach prudently leverages the positional correlation inherent in read depth (RD) data to achieve increased sensitivity without a significant loss in precision. Empirical validation through simulation and real-sample experiments confirms the superiority of LMADCNV over other seven CNV detection methods. LMADCNV not only offers a novel perspective for extracting local features but also shows promise as a robust and effective tool for CNV detection.</p>\",\"PeriodicalId\":520987,\"journal\":{\"name\":\"IEEE transactions on computational biology and bioinformatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on computational biology and bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TCBBIO.2025.3620990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on computational biology and bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCBBIO.2025.3620990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拷贝数变异(CNVs)是基因组中影响基因剂量的一种结构变异,对正常表型变异和疾病易感性都有重要影响。现有的拷贝数变异检测方法在不同覆盖深度的数据中灵敏度不稳定,无法识别较短的拷贝数变异片段。在此背景下,我们介绍了一种名为LMADCNV的新方法,专门用于检测来自下一代测序(NGS)的单样本数据中的cnv。LMADCNV采用通过聚类划分策略构建的局部特征,结合基于中位数绝对偏差的异常评分机制,方便了cnv的检测。这种创新的方法谨慎地利用了读取深度(RD)数据中固有的位置相关性,在不显著降低精度的情况下提高了灵敏度。通过仿真和实际样本实验验证了LMADCNV比其他七种CNV检测方法的优越性。LMADCNV不仅为提取局部特征提供了一种新的视角,而且有望成为一种鲁棒有效的CNV检测工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LMADCNV: A CNV Detection Method Based on Local Features and MAD for NGS Data.

Copy number variations (CNVs) are a type of structural variation in the genome that impact gene dosage, with significant implications for both normal phenotypic variability and susceptibility to disease. The existing copy number variation detection methods have unstable sensitivity in data with different coverage depths, and cannot identify shorter copy number variation fragments. In this context, we introduce a new method called LMADCNV, specifically designed for detecting CNVs in single-sample data from next-generation sequencing (NGS). LMADCNV employs local features constructed via a cluster partitioning strategy, in conjunction with an anomaly scoring mechanism predicated on median absolute deviation, to facilitate the detection of CNVs. This innovative approach prudently leverages the positional correlation inherent in read depth (RD) data to achieve increased sensitivity without a significant loss in precision. Empirical validation through simulation and real-sample experiments confirms the superiority of LMADCNV over other seven CNV detection methods. LMADCNV not only offers a novel perspective for extracting local features but also shows promise as a robust and effective tool for CNV detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信