联合特征值的随机计算方法及其在多参数特征值问题和寻根中的应用。

IF 2 3区 数学 Q2 MATHEMATICS, APPLIED
Numerical Algorithms Pub Date : 2025-01-01 Epub Date: 2024-10-31 DOI:10.1007/s11075-024-01971-0
Haoze He, Daniel Kressner, Bor Plestenjak
{"title":"联合特征值的随机计算方法及其在多参数特征值问题和寻根中的应用。","authors":"Haoze He, Daniel Kressner, Bor Plestenjak","doi":"10.1007/s11075-024-01971-0","DOIUrl":null,"url":null,"abstract":"<p><p>It is well known that a family of <math><mrow><mi>n</mi> <mo>×</mo> <mi>n</mi></mrow> </math> commuting matrices can be simultaneously triangularized by a unitary similarity transformation. The diagonal entries of the triangular matrices define the <i>n</i> joint eigenvalues of the family. In this work, we consider the task of numerically computing approximations to such joint eigenvalues for a family of (nearly) commuting matrices. This task arises, for example, in solvers for multiparameter eigenvalue problems and systems of multivariate polynomials, which are our main motivations. We propose and analyze a simple approach that computes eigenvalues as one-sided or two-sided Rayleigh quotients from eigenvectors of a random linear combination of the matrices in the family. We provide some analysis and numerous numerical examples, showing that such randomized approaches can compute semisimple joint eigenvalues accurately and lead to improved performance of existing solvers.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"100 3","pages":"861-892"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12515246/pdf/","citationCount":"0","resultStr":"{\"title\":\"Randomized methods for computing joint eigenvalues, with applications to multiparameter eigenvalue problems and root finding.\",\"authors\":\"Haoze He, Daniel Kressner, Bor Plestenjak\",\"doi\":\"10.1007/s11075-024-01971-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is well known that a family of <math><mrow><mi>n</mi> <mo>×</mo> <mi>n</mi></mrow> </math> commuting matrices can be simultaneously triangularized by a unitary similarity transformation. The diagonal entries of the triangular matrices define the <i>n</i> joint eigenvalues of the family. In this work, we consider the task of numerically computing approximations to such joint eigenvalues for a family of (nearly) commuting matrices. This task arises, for example, in solvers for multiparameter eigenvalue problems and systems of multivariate polynomials, which are our main motivations. We propose and analyze a simple approach that computes eigenvalues as one-sided or two-sided Rayleigh quotients from eigenvectors of a random linear combination of the matrices in the family. We provide some analysis and numerous numerical examples, showing that such randomized approaches can compute semisimple joint eigenvalues accurately and lead to improved performance of existing solvers.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"100 3\",\"pages\":\"861-892\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12515246/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01971-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01971-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,n × n交换矩阵族可以通过幺正相似变换同时三角化。三角矩阵的对角线元素定义了族的n个联合特征值。在这项工作中,我们考虑了一组(近)交换矩阵的这种联合特征值的数值计算近似的任务。例如,这个任务出现在多参数特征值问题和多元多项式系统的求解器中,这是我们的主要动机。我们提出并分析了一种简单的方法,从族中矩阵的随机线性组合的特征向量中计算特征值为单侧或双面瑞利商。我们提供了一些分析和大量的数值例子,表明这种随机化方法可以准确地计算半简单联合特征值,从而提高了现有求解器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomized methods for computing joint eigenvalues, with applications to multiparameter eigenvalue problems and root finding.

It is well known that a family of n × n commuting matrices can be simultaneously triangularized by a unitary similarity transformation. The diagonal entries of the triangular matrices define the n joint eigenvalues of the family. In this work, we consider the task of numerically computing approximations to such joint eigenvalues for a family of (nearly) commuting matrices. This task arises, for example, in solvers for multiparameter eigenvalue problems and systems of multivariate polynomials, which are our main motivations. We propose and analyze a simple approach that computes eigenvalues as one-sided or two-sided Rayleigh quotients from eigenvectors of a random linear combination of the matrices in the family. We provide some analysis and numerous numerical examples, showing that such randomized approaches can compute semisimple joint eigenvalues accurately and lead to improved performance of existing solvers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信