Wenjun Cheng, Mengjie Gu, Yuepeng Wang, Jing Wang, Shan Li, Gongwen Chen, Xu Chen, Oyetunde T Oyeyemi, Yang Hong, Wei Hu, Jipeng Wang
{"title":"基于高精度蛋白结构预测的虚拟对接管道加速了抗血吸虫化合物的鉴定。","authors":"Wenjun Cheng, Mengjie Gu, Yuepeng Wang, Jing Wang, Shan Li, Gongwen Chen, Xu Chen, Oyetunde T Oyeyemi, Yang Hong, Wei Hu, Jipeng Wang","doi":"10.1371/journal.ppat.1013274","DOIUrl":null,"url":null,"abstract":"<p><p>Schistosomiasis is a major neglected tropical disease that lacks an effective vaccine and faces increasing challenges from praziquantel resistance, underscoring the urgent need for novel therapeutics. Target-based drug discovery (TBDD) is a powerful strategy for drug development. In this study, we utilized AlphaFold to predict the structures of target proteins from Schistosoma mansoni and S. japonicum, followed by virtual molecular screening to identify potential inhibitors. Among 202 potential therapeutic targets, we identified 37 proteins with high-accuracy structural predictions suitable for molecular docking with 14,600 compounds. This screening yielded 268 candidate compounds, which were further evaluated ex vivo for activity against both adult and juvenile S. mansoni and S. japonicum. Seven compounds exhibited strong anti-schistosomal activity, with HY-B2171A (Carubicin hydrochloride, CH) emerging as the most potent. CH was predicted to target the splicing factor U2AF65, and knockdown of its coding gene Smp_019690 resulted in a phenotype similar to CH treatment. RNA sequencing revealed that both CH treatment and Smp_019690 RNA interference (RNAi) disrupted splicing events in the parasites. Further studies demonstrated that CH impairs parasite viability by inhibiting U2AF65 function in mRNA splicing regulation. By integrating RNAi-based target identification with structure-based virtual screening, alongside ex vivo phenotypic and molecular analyses of compound-treated schistosomes, our study provides a comprehensive framework for anti-schistosomal drug discovery and identifies promising candidates for further preclinical development.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 10","pages":"e1013274"},"PeriodicalIF":4.9000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12533970/pdf/","citationCount":"0","resultStr":"{\"title\":\"Highly accurate protein structure prediction-based virtual docking pipeline accelerating the identification of anti-schistosomal compounds.\",\"authors\":\"Wenjun Cheng, Mengjie Gu, Yuepeng Wang, Jing Wang, Shan Li, Gongwen Chen, Xu Chen, Oyetunde T Oyeyemi, Yang Hong, Wei Hu, Jipeng Wang\",\"doi\":\"10.1371/journal.ppat.1013274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Schistosomiasis is a major neglected tropical disease that lacks an effective vaccine and faces increasing challenges from praziquantel resistance, underscoring the urgent need for novel therapeutics. Target-based drug discovery (TBDD) is a powerful strategy for drug development. In this study, we utilized AlphaFold to predict the structures of target proteins from Schistosoma mansoni and S. japonicum, followed by virtual molecular screening to identify potential inhibitors. Among 202 potential therapeutic targets, we identified 37 proteins with high-accuracy structural predictions suitable for molecular docking with 14,600 compounds. This screening yielded 268 candidate compounds, which were further evaluated ex vivo for activity against both adult and juvenile S. mansoni and S. japonicum. Seven compounds exhibited strong anti-schistosomal activity, with HY-B2171A (Carubicin hydrochloride, CH) emerging as the most potent. CH was predicted to target the splicing factor U2AF65, and knockdown of its coding gene Smp_019690 resulted in a phenotype similar to CH treatment. RNA sequencing revealed that both CH treatment and Smp_019690 RNA interference (RNAi) disrupted splicing events in the parasites. Further studies demonstrated that CH impairs parasite viability by inhibiting U2AF65 function in mRNA splicing regulation. By integrating RNAi-based target identification with structure-based virtual screening, alongside ex vivo phenotypic and molecular analyses of compound-treated schistosomes, our study provides a comprehensive framework for anti-schistosomal drug discovery and identifies promising candidates for further preclinical development.</p>\",\"PeriodicalId\":48999,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":\"21 10\",\"pages\":\"e1013274\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12533970/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1013274\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1013274","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Highly accurate protein structure prediction-based virtual docking pipeline accelerating the identification of anti-schistosomal compounds.
Schistosomiasis is a major neglected tropical disease that lacks an effective vaccine and faces increasing challenges from praziquantel resistance, underscoring the urgent need for novel therapeutics. Target-based drug discovery (TBDD) is a powerful strategy for drug development. In this study, we utilized AlphaFold to predict the structures of target proteins from Schistosoma mansoni and S. japonicum, followed by virtual molecular screening to identify potential inhibitors. Among 202 potential therapeutic targets, we identified 37 proteins with high-accuracy structural predictions suitable for molecular docking with 14,600 compounds. This screening yielded 268 candidate compounds, which were further evaluated ex vivo for activity against both adult and juvenile S. mansoni and S. japonicum. Seven compounds exhibited strong anti-schistosomal activity, with HY-B2171A (Carubicin hydrochloride, CH) emerging as the most potent. CH was predicted to target the splicing factor U2AF65, and knockdown of its coding gene Smp_019690 resulted in a phenotype similar to CH treatment. RNA sequencing revealed that both CH treatment and Smp_019690 RNA interference (RNAi) disrupted splicing events in the parasites. Further studies demonstrated that CH impairs parasite viability by inhibiting U2AF65 function in mRNA splicing regulation. By integrating RNAi-based target identification with structure-based virtual screening, alongside ex vivo phenotypic and molecular analyses of compound-treated schistosomes, our study provides a comprehensive framework for anti-schistosomal drug discovery and identifies promising candidates for further preclinical development.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.