洞察WDR5:揭示其功能、调控和对骨骼肌的影响。

IF 3.2 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Epigenetics Pub Date : 2025-12-01 Epub Date: 2025-10-13 DOI:10.1080/15592294.2025.2573998
Erick Bahena-Culhuac, Mauricio Hernández-Somilleda, José Manuel Hernández-Hernández
{"title":"洞察WDR5:揭示其功能、调控和对骨骼肌的影响。","authors":"Erick Bahena-Culhuac, Mauricio Hernández-Somilleda, José Manuel Hernández-Hernández","doi":"10.1080/15592294.2025.2573998","DOIUrl":null,"url":null,"abstract":"<p><p>WD40-repeat-containing protein 5 (WDR5) is a highly conserved multifunctional scaffold protein with a toroidal structure, facilitating interactions with numerous partners through its WDR5-binding motif (WBM) and WDR5-interacting (WIN) sites. It plays a critical role in histone modifications, including H3K4 methylation (H3K4me), histone acetylation, and deacetylation, influencing stem cell maintenance and differentiation. Recent studies highlight its involvement in muscle homeostasis, particularly in skeletal muscle progenitor cells, where it regulates PAX7-driven myogenic factor expression. Additionally, WDR5 governs epigenetic programs in smooth muscle by modulating H3K4me marks on lineage-specific genes. Despite extensive research on its role in cancer and chromatin remodeling, its broader physiological functions remain underexplored. This review examines WDR5's regulatory mechanisms, including its modulation by long non-coding RNAs (lncRNAs), post-translational modifications (PTMs), and microproteins, while emphasizing its relevance to muscle biology. Understanding WDR5's interactome and regulatory networks could provide novel insights into muscle regeneration, stem cell dynamics, and potential therapeutic strategies for muscular disorders and regenerative medicine.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2573998"},"PeriodicalIF":3.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into WDR5: unveiling its functions, regulation, and impact on skeletal muscle.\",\"authors\":\"Erick Bahena-Culhuac, Mauricio Hernández-Somilleda, José Manuel Hernández-Hernández\",\"doi\":\"10.1080/15592294.2025.2573998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>WD40-repeat-containing protein 5 (WDR5) is a highly conserved multifunctional scaffold protein with a toroidal structure, facilitating interactions with numerous partners through its WDR5-binding motif (WBM) and WDR5-interacting (WIN) sites. It plays a critical role in histone modifications, including H3K4 methylation (H3K4me), histone acetylation, and deacetylation, influencing stem cell maintenance and differentiation. Recent studies highlight its involvement in muscle homeostasis, particularly in skeletal muscle progenitor cells, where it regulates PAX7-driven myogenic factor expression. Additionally, WDR5 governs epigenetic programs in smooth muscle by modulating H3K4me marks on lineage-specific genes. Despite extensive research on its role in cancer and chromatin remodeling, its broader physiological functions remain underexplored. This review examines WDR5's regulatory mechanisms, including its modulation by long non-coding RNAs (lncRNAs), post-translational modifications (PTMs), and microproteins, while emphasizing its relevance to muscle biology. Understanding WDR5's interactome and regulatory networks could provide novel insights into muscle regeneration, stem cell dynamics, and potential therapeutic strategies for muscular disorders and regenerative medicine.</p>\",\"PeriodicalId\":11767,\"journal\":{\"name\":\"Epigenetics\",\"volume\":\"20 1\",\"pages\":\"2573998\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15592294.2025.2573998\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2025.2573998","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

WD40-repeat-containing protein 5 (WDR5)是一种高度保守的多功能支架蛋白,具有环形结构,通过其WDR5结合基序(WBM)和WDR5相互作用(WIN)位点促进与众多伙伴的相互作用。它在组蛋白修饰中起关键作用,包括H3K4甲基化(H3K4me)、组蛋白乙酰化和去乙酰化,影响干细胞的维持和分化。最近的研究强调它参与肌肉稳态,特别是在骨骼肌祖细胞中,在那里它调节pax7驱动的肌生成因子的表达。此外,WDR5通过调节谱系特异性基因上的H3K4me标记来控制平滑肌的表观遗传程序。尽管对其在癌症和染色质重塑中的作用进行了广泛的研究,但其更广泛的生理功能仍未得到充分探索。本文综述了WDR5的调控机制,包括长链非编码rna (lncRNAs)、翻译后修饰(PTMs)和微蛋白的调控,同时强调了其与肌肉生物学的相关性。了解WDR5的相互作用组和调控网络可以为肌肉再生、干细胞动力学以及肌肉疾病和再生医学的潜在治疗策略提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights into WDR5: unveiling its functions, regulation, and impact on skeletal muscle.

WD40-repeat-containing protein 5 (WDR5) is a highly conserved multifunctional scaffold protein with a toroidal structure, facilitating interactions with numerous partners through its WDR5-binding motif (WBM) and WDR5-interacting (WIN) sites. It plays a critical role in histone modifications, including H3K4 methylation (H3K4me), histone acetylation, and deacetylation, influencing stem cell maintenance and differentiation. Recent studies highlight its involvement in muscle homeostasis, particularly in skeletal muscle progenitor cells, where it regulates PAX7-driven myogenic factor expression. Additionally, WDR5 governs epigenetic programs in smooth muscle by modulating H3K4me marks on lineage-specific genes. Despite extensive research on its role in cancer and chromatin remodeling, its broader physiological functions remain underexplored. This review examines WDR5's regulatory mechanisms, including its modulation by long non-coding RNAs (lncRNAs), post-translational modifications (PTMs), and microproteins, while emphasizing its relevance to muscle biology. Understanding WDR5's interactome and regulatory networks could provide novel insights into muscle regeneration, stem cell dynamics, and potential therapeutic strategies for muscular disorders and regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epigenetics
Epigenetics 生物-生化与分子生物学
CiteScore
6.80
自引率
2.70%
发文量
82
审稿时长
3-8 weeks
期刊介绍: Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed. Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to): DNA methylation Nucleosome positioning and modification Gene silencing Imprinting Nuclear reprogramming Chromatin remodeling Non-coding RNA Non-histone chromosomal elements Dosage compensation Nuclear organization Epigenetic therapy and diagnostics Nutrition and environmental epigenetics Cancer epigenetics Neuroepigenetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信