基于重离子辐照的双模缺陷工程MoS2/SnSe2异质结构用于太阳盲紫外光探测和神经形态光电子学

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shengxia Zhang, Pengliang Zhu, Shifan Gao, Jiande Liu, Lijun Xu, Pengfei Zhai, Jie Liu
{"title":"基于重离子辐照的双模缺陷工程MoS2/SnSe2异质结构用于太阳盲紫外光探测和神经形态光电子学","authors":"Shengxia Zhang,&nbsp;Pengliang Zhu,&nbsp;Shifan Gao,&nbsp;Jiande Liu,&nbsp;Lijun Xu,&nbsp;Pengfei Zhai,&nbsp;Jie Liu","doi":"10.1002/adom.202501738","DOIUrl":null,"url":null,"abstract":"<p>\n2D transition metal dichalcogenide (2D-TMDC) heterostructures hold transformative potential for optoelectronics, yet extending their spectral response to the solar-blind ultraviolet (SBUV, 200–280 nm) range while enabling neuromorphic functionalities remains challenging. A heavy ion irradiation-enabled defect engineering strategy is presented to achieve dual-mode optoelectronic operation in MoS<sub>2</sub>/SnSe<sub>2</sub> heterostructures. Controlled irradiation simultaneously introduces latent track defects within channels and interfacial trap states. The engineered defects extend photoresponsivity to 200 nm (19.2 A W<sup>−1</sup>), setting a new benchmark for SBUV detection in 2D materials, while interfacial states enable optoelectronic synaptic operations with short/long-term plasticity (STP/LTP) at 255 and 532 nm, demonstrating robust operation across wavelengths. Systematic characterization of paired-pulse facilitation (PPF) and long-term potentiation under repeated light stimuli confirms reproducible synaptic responses and enhanced state stability in irradiated devices. The engineered channel defects modify the band structure to facilitate SBUV photodetection, whereas the created interfacial trap states provide the necessary charge storage capability for neuromorphic computation. This work establishes heavy ion irradiation as a universal tool for multifunctional 2D optoelectronics, enabling concurrent SBUV photodetection and neuromorphic signal processing. The defect-mediated band/carrier engineering paradigm provides an atomic-scale blueprint for merging conventional optoelectronics with bio-inspired computing architectures.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 29","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Mode Defect-Engineered MoS2/SnSe2 Heterostructures via Heavy Ion Irradiation for Solar-Blind UV Photodetection and Neuromorphic Optoelectronics\",\"authors\":\"Shengxia Zhang,&nbsp;Pengliang Zhu,&nbsp;Shifan Gao,&nbsp;Jiande Liu,&nbsp;Lijun Xu,&nbsp;Pengfei Zhai,&nbsp;Jie Liu\",\"doi\":\"10.1002/adom.202501738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\n2D transition metal dichalcogenide (2D-TMDC) heterostructures hold transformative potential for optoelectronics, yet extending their spectral response to the solar-blind ultraviolet (SBUV, 200–280 nm) range while enabling neuromorphic functionalities remains challenging. A heavy ion irradiation-enabled defect engineering strategy is presented to achieve dual-mode optoelectronic operation in MoS<sub>2</sub>/SnSe<sub>2</sub> heterostructures. Controlled irradiation simultaneously introduces latent track defects within channels and interfacial trap states. The engineered defects extend photoresponsivity to 200 nm (19.2 A W<sup>−1</sup>), setting a new benchmark for SBUV detection in 2D materials, while interfacial states enable optoelectronic synaptic operations with short/long-term plasticity (STP/LTP) at 255 and 532 nm, demonstrating robust operation across wavelengths. Systematic characterization of paired-pulse facilitation (PPF) and long-term potentiation under repeated light stimuli confirms reproducible synaptic responses and enhanced state stability in irradiated devices. The engineered channel defects modify the band structure to facilitate SBUV photodetection, whereas the created interfacial trap states provide the necessary charge storage capability for neuromorphic computation. This work establishes heavy ion irradiation as a universal tool for multifunctional 2D optoelectronics, enabling concurrent SBUV photodetection and neuromorphic signal processing. The defect-mediated band/carrier engineering paradigm provides an atomic-scale blueprint for merging conventional optoelectronics with bio-inspired computing architectures.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"13 29\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202501738\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202501738","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维过渡金属二硫化物(2D- tmdc)异质结构具有光电子学的变革潜力,但将其光谱响应扩展到太阳盲紫外(SBUV, 200-280 nm)范围,同时实现神经形态功能仍然具有挑战性。提出了一种在MoS2/SnSe2异质结构中实现双模光电工作的重离子辐照缺陷工程策略。受控辐照同时在通道和界面阱状态中引入了潜在的径迹缺陷。该工程缺陷将光响应性扩展到200 nm (19.2 A W−1),为二维材料中的SBUV检测设定了新的基准,而界面状态使光电突触操作在255和532 nm具有短期/长期可塑性(STP/LTP),展示了跨波长的鲁棒性。对重复光刺激下的成对脉冲促进(PPF)和长时程增强的系统表征证实了在辐照装置中可重复的突触反应和增强的状态稳定性。工程通道缺陷改变了能带结构以促进SBUV光探测,而创建的界面陷阱状态为神经形态计算提供了必要的电荷存储能力。这项工作建立了重离子辐照作为多功能二维光电子学的通用工具,使SBUV光探测和神经形态信号处理并行。缺陷介导的带/载波工程范式为将传统光电子学与生物启发计算架构相结合提供了原子尺度的蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual-Mode Defect-Engineered MoS2/SnSe2 Heterostructures via Heavy Ion Irradiation for Solar-Blind UV Photodetection and Neuromorphic Optoelectronics

Dual-Mode Defect-Engineered MoS2/SnSe2 Heterostructures via Heavy Ion Irradiation for Solar-Blind UV Photodetection and Neuromorphic Optoelectronics

2D transition metal dichalcogenide (2D-TMDC) heterostructures hold transformative potential for optoelectronics, yet extending their spectral response to the solar-blind ultraviolet (SBUV, 200–280 nm) range while enabling neuromorphic functionalities remains challenging. A heavy ion irradiation-enabled defect engineering strategy is presented to achieve dual-mode optoelectronic operation in MoS2/SnSe2 heterostructures. Controlled irradiation simultaneously introduces latent track defects within channels and interfacial trap states. The engineered defects extend photoresponsivity to 200 nm (19.2 A W−1), setting a new benchmark for SBUV detection in 2D materials, while interfacial states enable optoelectronic synaptic operations with short/long-term plasticity (STP/LTP) at 255 and 532 nm, demonstrating robust operation across wavelengths. Systematic characterization of paired-pulse facilitation (PPF) and long-term potentiation under repeated light stimuli confirms reproducible synaptic responses and enhanced state stability in irradiated devices. The engineered channel defects modify the band structure to facilitate SBUV photodetection, whereas the created interfacial trap states provide the necessary charge storage capability for neuromorphic computation. This work establishes heavy ion irradiation as a universal tool for multifunctional 2D optoelectronics, enabling concurrent SBUV photodetection and neuromorphic signal processing. The defect-mediated band/carrier engineering paradigm provides an atomic-scale blueprint for merging conventional optoelectronics with bio-inspired computing architectures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信