Eu2+掺杂驱动Sr2SiO4玻璃陶瓷的多态转变及其光学特性裁剪和多功能光子应用

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tao Hu, Hong Yang, Yulan Guo, Jiaqi Huang, Yan Gao, Hang Lin
{"title":"Eu2+掺杂驱动Sr2SiO4玻璃陶瓷的多态转变及其光学特性裁剪和多功能光子应用","authors":"Tao Hu,&nbsp;Hong Yang,&nbsp;Yulan Guo,&nbsp;Jiaqi Huang,&nbsp;Yan Gao,&nbsp;Hang Lin","doi":"10.1002/adom.202501563","DOIUrl":null,"url":null,"abstract":"<p>Polycrystalline phase transition provides an effective method to modulate structure of luminescent materials, offering a promising pathway for expanding optical properties and adaptive optoelectronic applications. In this study, for the first time the controlled <i>β</i> → <i>ɑ</i> phase-transition engineering is reported in Sr<sub>2</sub>SiO<sub>4</sub>:Eu<sup>2</sup><sup>+</sup> glass ceramic (GC) through chemical doping of Eu<sup>2</sup><sup>+</sup> ions, where the Eu<sup>2</sup><sup>+</sup> ions act dual-functionally as structural modulator and stabilizer. Molecular dynamics simulations reveal that Eu<sup>2</sup>⁺ doping does not significantly modify the short-range order of glass, indicating that the <i>β</i> → <i>α</i> phase transition primarily results from dopant-induced crystallization dynamics. Interestingly, the <i>α</i>-phase variant demonstrates thermochromic properties, enabling fluorescent anti-counterfeiting applications; while the <i>β</i>-phase variant shows superior thermal stability (82% photoluminescence remained at 423 K), excellent water-resistance, and extraordinarily stable color emission, making it suitable for high-quality lighting with color rendering index up to 95. This work provides a new thought of designing a GC platform via controllable polymorphic phase transition toward multifunctional photonic applications.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 29","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eu2+ Doping Driven Polymorphic Transition in Sr2SiO4 Glass Ceramic for Optical Property Tailoring and Multifunctional Photonic Applications\",\"authors\":\"Tao Hu,&nbsp;Hong Yang,&nbsp;Yulan Guo,&nbsp;Jiaqi Huang,&nbsp;Yan Gao,&nbsp;Hang Lin\",\"doi\":\"10.1002/adom.202501563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polycrystalline phase transition provides an effective method to modulate structure of luminescent materials, offering a promising pathway for expanding optical properties and adaptive optoelectronic applications. In this study, for the first time the controlled <i>β</i> → <i>ɑ</i> phase-transition engineering is reported in Sr<sub>2</sub>SiO<sub>4</sub>:Eu<sup>2</sup><sup>+</sup> glass ceramic (GC) through chemical doping of Eu<sup>2</sup><sup>+</sup> ions, where the Eu<sup>2</sup><sup>+</sup> ions act dual-functionally as structural modulator and stabilizer. Molecular dynamics simulations reveal that Eu<sup>2</sup>⁺ doping does not significantly modify the short-range order of glass, indicating that the <i>β</i> → <i>α</i> phase transition primarily results from dopant-induced crystallization dynamics. Interestingly, the <i>α</i>-phase variant demonstrates thermochromic properties, enabling fluorescent anti-counterfeiting applications; while the <i>β</i>-phase variant shows superior thermal stability (82% photoluminescence remained at 423 K), excellent water-resistance, and extraordinarily stable color emission, making it suitable for high-quality lighting with color rendering index up to 95. This work provides a new thought of designing a GC platform via controllable polymorphic phase transition toward multifunctional photonic applications.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"13 29\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202501563\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202501563","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多晶相变为发光材料的结构调制提供了有效的方法,为扩大光学性能和自适应光电应用提供了一条有前途的途径。本研究首次报道了通过化学掺杂Eu2+离子在Sr2SiO4:Eu2+玻璃陶瓷(GC)中实现可控β→β相变工程,其中Eu2+离子具有结构调节剂和稳定剂的双重功能。分子动力学模拟结果表明,Eu2 +掺杂并没有明显改变玻璃的短程序,表明β→α相变主要是由掺杂诱导的结晶动力学引起的。有趣的是,α-相变体表现出热致变色特性,使荧光防伪应用成为可能;而β相变体表现出优异的热稳定性(在423 K时仍保持82%的光致发光),优异的耐水性和非常稳定的显色性,使其适用于显色指数高达95的高质量照明。本研究提供了一种基于可控多态相变的GC平台设计的新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Eu2+ Doping Driven Polymorphic Transition in Sr2SiO4 Glass Ceramic for Optical Property Tailoring and Multifunctional Photonic Applications

Eu2+ Doping Driven Polymorphic Transition in Sr2SiO4 Glass Ceramic for Optical Property Tailoring and Multifunctional Photonic Applications

Polycrystalline phase transition provides an effective method to modulate structure of luminescent materials, offering a promising pathway for expanding optical properties and adaptive optoelectronic applications. In this study, for the first time the controlled βɑ phase-transition engineering is reported in Sr2SiO4:Eu2+ glass ceramic (GC) through chemical doping of Eu2+ ions, where the Eu2+ ions act dual-functionally as structural modulator and stabilizer. Molecular dynamics simulations reveal that Eu2⁺ doping does not significantly modify the short-range order of glass, indicating that the βα phase transition primarily results from dopant-induced crystallization dynamics. Interestingly, the α-phase variant demonstrates thermochromic properties, enabling fluorescent anti-counterfeiting applications; while the β-phase variant shows superior thermal stability (82% photoluminescence remained at 423 K), excellent water-resistance, and extraordinarily stable color emission, making it suitable for high-quality lighting with color rendering index up to 95. This work provides a new thought of designing a GC platform via controllable polymorphic phase transition toward multifunctional photonic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信