超离子导体改性泡沫镍实现了稳定钠阳极的区域诱导沉积

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Yi Ding, Min Guo, Song Lu, Tiancun Liu, Zhixin Yu
{"title":"超离子导体改性泡沫镍实现了稳定钠阳极的区域诱导沉积","authors":"Yi Ding, Min Guo, Song Lu, Tiancun Liu, Zhixin Yu","doi":"10.1039/d5qi01606a","DOIUrl":null,"url":null,"abstract":"The practical application of Na metal batteries is severely hindered by uncontrolled Na dendrite growth and large volume fluctuations, which lead to safety hazards and poor cycling stability. Herein, we designed a composite 3D Ni foam skeleton modified with fast-ion conductor (FIC) networks to achieve dual ionic/electronic conductivity, enabling spatially guided Na deposition and confined growth. The FIC modification exhibits strong Na+ affinity, which ensures uniform ion distribution and directs Na deposition preferentially within the porous Ni framework rather than on its surface. This unique structure facilitates region-induced deposition and spatial confinement of Na metal, effectively suppressing dendrite formation and mitigating volume expansion.Moreover, the FIC network significantly enhances Na+ transport kinetics during plating/stripping processes, improving electrochemical reversibility. As a result, the FIC-modified 3D Ni host enables stable Na metal anodes with prolonged cycling life and reduced polarization. The symmetric cells exhibit stable operation for 300 hours at 0.5 mA cm-2 and 2 mAh cm-2 , while full cells demonstrate outstanding capacity retention of 94.6% at 5 C over 400 cycles. This work presents a rational electrode design strategy that combines guided ion-redistribution and physical confinement to achieve dendrite-free Na metal anodes, providing new insights for developing high-energydensity Na-based batteries.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"120 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superionic-Conductor-Modified Nickel Foam Enables Region-Induced Deposition for Stable Sodium Anodes\",\"authors\":\"Yi Ding, Min Guo, Song Lu, Tiancun Liu, Zhixin Yu\",\"doi\":\"10.1039/d5qi01606a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The practical application of Na metal batteries is severely hindered by uncontrolled Na dendrite growth and large volume fluctuations, which lead to safety hazards and poor cycling stability. Herein, we designed a composite 3D Ni foam skeleton modified with fast-ion conductor (FIC) networks to achieve dual ionic/electronic conductivity, enabling spatially guided Na deposition and confined growth. The FIC modification exhibits strong Na+ affinity, which ensures uniform ion distribution and directs Na deposition preferentially within the porous Ni framework rather than on its surface. This unique structure facilitates region-induced deposition and spatial confinement of Na metal, effectively suppressing dendrite formation and mitigating volume expansion.Moreover, the FIC network significantly enhances Na+ transport kinetics during plating/stripping processes, improving electrochemical reversibility. As a result, the FIC-modified 3D Ni host enables stable Na metal anodes with prolonged cycling life and reduced polarization. The symmetric cells exhibit stable operation for 300 hours at 0.5 mA cm-2 and 2 mAh cm-2 , while full cells demonstrate outstanding capacity retention of 94.6% at 5 C over 400 cycles. This work presents a rational electrode design strategy that combines guided ion-redistribution and physical confinement to achieve dendrite-free Na metal anodes, providing new insights for developing high-energydensity Na-based batteries.\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5qi01606a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi01606a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

Na金属电池不受控制的Na枝晶生长和较大的体积波动严重阻碍了Na金属电池的实际应用,导致安全隐患和循环稳定性差。在此,我们设计了一种用快速离子导体(FIC)网络修饰的复合3D Ni泡沫骨架,以实现离子/电子双导电性,实现空间引导Na沉积和受限生长。FIC修饰表现出很强的Na+亲和力,确保了离子均匀分布,并优先在多孔Ni框架内而不是表面沉积Na。这种独特的结构有利于Na金属的区域诱导沉积和空间限制,有效抑制枝晶的形成和减轻体积膨胀。此外,FIC网络显著增强了镀/剥离过程中的Na+输运动力学,提高了电化学可逆性。因此,fic修饰的3D Ni主机可以实现稳定的Na金属阳极,延长循环寿命并降低极化。对称电池在0.5 mA cm-2和2 mAh cm-2下稳定运行300小时,而完整电池在5℃下超过400次循环的容量保持率为94.6%。本研究提出了一种合理的电极设计策略,结合引导离子再分配和物理约束来实现无枝晶的Na金属阳极,为开发高能量密度Na基电池提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superionic-Conductor-Modified Nickel Foam Enables Region-Induced Deposition for Stable Sodium Anodes
The practical application of Na metal batteries is severely hindered by uncontrolled Na dendrite growth and large volume fluctuations, which lead to safety hazards and poor cycling stability. Herein, we designed a composite 3D Ni foam skeleton modified with fast-ion conductor (FIC) networks to achieve dual ionic/electronic conductivity, enabling spatially guided Na deposition and confined growth. The FIC modification exhibits strong Na+ affinity, which ensures uniform ion distribution and directs Na deposition preferentially within the porous Ni framework rather than on its surface. This unique structure facilitates region-induced deposition and spatial confinement of Na metal, effectively suppressing dendrite formation and mitigating volume expansion.Moreover, the FIC network significantly enhances Na+ transport kinetics during plating/stripping processes, improving electrochemical reversibility. As a result, the FIC-modified 3D Ni host enables stable Na metal anodes with prolonged cycling life and reduced polarization. The symmetric cells exhibit stable operation for 300 hours at 0.5 mA cm-2 and 2 mAh cm-2 , while full cells demonstrate outstanding capacity retention of 94.6% at 5 C over 400 cycles. This work presents a rational electrode design strategy that combines guided ion-redistribution and physical confinement to achieve dendrite-free Na metal anodes, providing new insights for developing high-energydensity Na-based batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信