欧几里得准备

IF 5.8 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
A. Humphrey, P. A. C. Cunha, L. Bisigello, C. Tortora, M. Bolzonella, L. Pozzetti, M. Baes, B. R. Granett, A. Amara, S. Andreon, N. Auricchio, C. Baccigalupi, M. Baldi, S. Bardelli, C. Bodendorf, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, C. Carbone, J. Carretero, S. Casas, M. Castellano, G. Castignani, S. Cavuoti, A. Cimatti, C. Colodro-Conde, G. Congedo, C. J. Conselice, L. Conversi, Y. Copin, F. Courbin, H. M. Courtois, A. Da Silva, H. Degaudenzi, G. De Lucia, J. Dinis, F. Dubath, X. Dupac, S. Dusini, M. Farina, S. Farrens, S. Ferriol, M. Frailis, E. Franceschi, S. Galeotta, K. George, B. Gillis, C. Giocoli, A. Grazian, F. Grupp, L. Guzzo, S. V. H. Haugan, W. Holmes, I. Hook, F. Hormuth, A. Hornstrup, K. Jahnke, B. Joachimi, E. Keihänen, S. Kermiche, A. Kiessling, M. Kilbinger, B. Kubik, M. Kümmel, M. Kunz, H. Kurki-Suonio, S. Ligori, P. B. Lilje, V. Lindholm, I. Lloro, G. Mainetti, D. Maino, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovic, M. Martinelli, N. Martinet, F. Marulli, R. Massey, H. J. McCracken, E. Medinaceli, S. Mei, M. Melchior, Y. Mellier, M. Meneghetti, E. Merlin, G. Meylan, M. Moresco, L. Moscardini, E. Munari, R. Nakajima, S.-M. Niemi, J. W. Nightingale, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, V. Pettorino, S. Pires, G. Polenta, M. Poncet, L. A. Popa, F. Raison, R. Rebolo, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, E. Rossetti, R. Saglia, Z. Sakr, A. G. Sánchez, D. Sapone, R. Scaramella, P. Schneider, T. Schrabback, M. Scodeggio, A. Secroun, E. Sefusatti, G. Seidel, S. Serrano, C. Sirignano, L. Stanco, J. Steinwagner, P. Tallada-Crespí, A. N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, I. Tutusaus, L. Valenziano, T. Vassallo, A. Veropalumbo, Y. Wang, J. Weller, G. Zamorani, J. Zoubian, E. Zucca, A. Biviano, A. Boucaud, E. Bozzo, C. Burigana, M. Calabrese, R. Farinelli, N. Mauri, V. Scottez, M. Tenti, M. Viel, M. Wiesmann, Y. Akrami, V. Allevato, S. Anselmi, M. Ballardini, A. Blanchard, S. Borgani, S. Bruton, R. Cabanac, A. Calabro, G. Cañas-Herrera, A. Cappi, C. S. Carvalho, T. Castro, K. C. Chambers, S. Contarini, A. R. Cooray, J. Coupon, O. Cucciati, G. Desprez, A. Díaz-Sánchez, S. Di Domizio, J. A. Escartin Vigo, S. Escoffier, A. G. Ferrari, P. G. Ferreira, I. Ferrero, F. Fornari, L. Gabarra, K. Ganga, J. García-Bellido, E. Gaztanaga, F. Giacomini, G. Gozaliasl, A. Gregorio, A. Hall, H. Hildebrandt, J. Hjorth, J. J. E. Kajava, V. Kansal, D. Karagiannis, C. C. Kirkpatrick, L. Legrand, G. Libet, A. Loureiro, G. Maggio, M. Magliocchetti, F. Mannucci, R. Maoli, C. J. A. P. Martins, S. Matthew, L. Maurin, R. B. Metcalf, P. Monaco, C. Moretti, G. Morgante, Nicholas A. Walton, J. Odier, L. Patrizii, M. Pöntinen, V. Popa, C. Porciani, D. Potter, I. Risso, P.-F. Rocci, M. Sahlén, A. Schneider, M. Sereno, P. Simon, A. Spurio Mancini, C. Tao, G. Testera, R. Teyssier, S. Toft, S. Tosi, A. Troja, M. Tucci, C. Valieri, J. Valiviita, D. Vergani, G. Verza
{"title":"欧几里得准备","authors":"A. Humphrey, P. A. C. Cunha, L. Bisigello, C. Tortora, M. Bolzonella, L. Pozzetti, M. Baes, B. R. Granett, A. Amara, S. Andreon, N. Auricchio, C. Baccigalupi, M. Baldi, S. Bardelli, C. Bodendorf, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, C. Carbone, J. Carretero, S. Casas, M. Castellano, G. Castignani, S. Cavuoti, A. Cimatti, C. Colodro-Conde, G. Congedo, C. J. Conselice, L. Conversi, Y. Copin, F. Courbin, H. M. Courtois, A. Da Silva, H. Degaudenzi, G. De Lucia, J. Dinis, F. Dubath, X. Dupac, S. Dusini, M. Farina, S. Farrens, S. Ferriol, M. Frailis, E. Franceschi, S. Galeotta, K. George, B. Gillis, C. Giocoli, A. Grazian, F. Grupp, L. Guzzo, S. V. H. Haugan, W. Holmes, I. Hook, F. Hormuth, A. Hornstrup, K. Jahnke, B. Joachimi, E. Keihänen, S. Kermiche, A. Kiessling, M. Kilbinger, B. Kubik, M. Kümmel, M. Kunz, H. Kurki-Suonio, S. Ligori, P. B. Lilje, V. Lindholm, I. Lloro, G. Mainetti, D. Maino, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovic, M. Martinelli, N. Martinet, F. Marulli, R. Massey, H. J. McCracken, E. Medinaceli, S. Mei, M. Melchior, Y. Mellier, M. Meneghetti, E. Merlin, G. Meylan, M. Moresco, L. Moscardini, E. Munari, R. Nakajima, S.-M. Niemi, J. W. Nightingale, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, V. Pettorino, S. Pires, G. Polenta, M. Poncet, L. A. Popa, F. Raison, R. Rebolo, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, E. Rossetti, R. Saglia, Z. Sakr, A. G. Sánchez, D. Sapone, R. Scaramella, P. Schneider, T. Schrabback, M. Scodeggio, A. Secroun, E. Sefusatti, G. Seidel, S. Serrano, C. Sirignano, L. Stanco, J. Steinwagner, P. Tallada-Crespí, A. N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, I. Tutusaus, L. Valenziano, T. Vassallo, A. Veropalumbo, Y. Wang, J. Weller, G. Zamorani, J. Zoubian, E. Zucca, A. Biviano, A. Boucaud, E. Bozzo, C. Burigana, M. Calabrese, R. Farinelli, N. Mauri, V. Scottez, M. Tenti, M. Viel, M. Wiesmann, Y. Akrami, V. Allevato, S. Anselmi, M. Ballardini, A. Blanchard, S. Borgani, S. Bruton, R. Cabanac, A. Calabro, G. Cañas-Herrera, A. Cappi, C. S. Carvalho, T. Castro, K. C. Chambers, S. Contarini, A. R. Cooray, J. Coupon, O. Cucciati, G. Desprez, A. Díaz-Sánchez, S. Di Domizio, J. A. Escartin Vigo, S. Escoffier, A. G. Ferrari, P. G. Ferreira, I. Ferrero, F. Fornari, L. Gabarra, K. Ganga, J. García-Bellido, E. Gaztanaga, F. Giacomini, G. Gozaliasl, A. Gregorio, A. Hall, H. Hildebrandt, J. Hjorth, J. J. E. Kajava, V. Kansal, D. Karagiannis, C. C. Kirkpatrick, L. Legrand, G. Libet, A. Loureiro, G. Maggio, M. Magliocchetti, F. Mannucci, R. Maoli, C. J. A. P. Martins, S. Matthew, L. Maurin, R. B. Metcalf, P. Monaco, C. Moretti, G. Morgante, Nicholas A. Walton, J. Odier, L. Patrizii, M. Pöntinen, V. Popa, C. Porciani, D. Potter, I. Risso, P.-F. Rocci, M. Sahlén, A. Schneider, M. Sereno, P. Simon, A. Spurio Mancini, C. Tao, G. Testera, R. Teyssier, S. Toft, S. Tosi, A. Troja, M. Tucci, C. Valieri, J. Valiviita, D. Vergani, G. Verza","doi":"10.1051/0004-6361/202452468","DOIUrl":null,"url":null,"abstract":"The <i>Euclid<i/> Space Telescope will image about 14 000 deg<sup>2<sup/> of the extragalactic sky at visible and near-infrared wavelengths, providing a dataset of unprecedented size and richness that will facilitate a multitude of studies into the evolution of galaxies. Although spectroscopy will also be available for some of the galaxies, in the vast majority of cases the main source of information will come from broadband images and data products thereof (i.e. photometry). Therefore, there is a pressing need to identify or develop scalable yet reliable methodologies to estimate the redshift and physical properties of galaxies using broadband photometry from <i>Euclid<i/>. Optionally, such methods could also include ground-based optical photometry. To address this need, we present a novel method developed as part of a ‘data challenge’ within the Euclid Collaboration to estimate the redshift, stellar mass, star-formation rate, specific star-formation rate, <i>E<i/>(<i>B<i/> − <i>V<i/>), and age of galaxies using mock <i>Euclid<i/> and ground-based photometry. The main novelty of our property-estimation pipeline is its use of the CatBoost implementation of gradient-boosted regression-trees together with chained regression and an intelligent, automatic optimisation of the training data. The pipeline also includes a computationally efficient method to estimate prediction uncertainties, and, in the absence of ground-truth labels, it provides accurate predictions for metrics of model performance up to <i>z<i/> ~ 2. We applied our pipeline to several datasets consisting of mock <i>Euclid<i/> broadband photometry and mock ground-based <i>ugriz<i/> photometry, with the objective of evaluating the performance of our methodology for estimating the redshift and physical properties of galaxies detected in the Euclid Wide Survey. The statistical metrics of prediction residuals vary depending on which mock catalogue and filters are tested. Nonetheless, the quality of our photometric redshift and physical property estimates are highly competitive overall, validating our modelling approach. However, at <i>z<i/> ≳ 3.5, the relative sparsity of galaxies resulted in unreliable redshift and physical property estimates, which we argue could be mitigated by building catalogues with better sampling of <i>z<i/> ≳ 3.5 galaxies or by switching to the use of spectral energy distribution fitting in this regime. We also find that the inclusion of ground-based optical photometry significantly improves the quality of the property estimation, highlighting the importance of combining <i>Euclid<i/> data with ancillary ground-based data from such surveys as the <i>Vera C. Rubin<i/> Observatory Legacy Survey of Space and Time and UNIONS.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"1 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Euclid preparation\",\"authors\":\"A. Humphrey, P. A. C. Cunha, L. Bisigello, C. Tortora, M. Bolzonella, L. Pozzetti, M. Baes, B. R. Granett, A. Amara, S. Andreon, N. Auricchio, C. Baccigalupi, M. Baldi, S. Bardelli, C. Bodendorf, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, C. Carbone, J. Carretero, S. Casas, M. Castellano, G. Castignani, S. Cavuoti, A. Cimatti, C. Colodro-Conde, G. Congedo, C. J. Conselice, L. Conversi, Y. Copin, F. Courbin, H. M. Courtois, A. Da Silva, H. Degaudenzi, G. De Lucia, J. Dinis, F. Dubath, X. Dupac, S. Dusini, M. Farina, S. Farrens, S. Ferriol, M. Frailis, E. Franceschi, S. Galeotta, K. George, B. Gillis, C. Giocoli, A. Grazian, F. Grupp, L. Guzzo, S. V. H. Haugan, W. Holmes, I. Hook, F. Hormuth, A. Hornstrup, K. Jahnke, B. Joachimi, E. Keihänen, S. Kermiche, A. Kiessling, M. Kilbinger, B. Kubik, M. Kümmel, M. Kunz, H. Kurki-Suonio, S. Ligori, P. B. Lilje, V. Lindholm, I. Lloro, G. Mainetti, D. Maino, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovic, M. Martinelli, N. Martinet, F. Marulli, R. Massey, H. J. McCracken, E. Medinaceli, S. Mei, M. Melchior, Y. Mellier, M. Meneghetti, E. Merlin, G. Meylan, M. Moresco, L. Moscardini, E. Munari, R. Nakajima, S.-M. Niemi, J. W. Nightingale, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, V. Pettorino, S. Pires, G. Polenta, M. Poncet, L. A. Popa, F. Raison, R. Rebolo, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, E. Rossetti, R. Saglia, Z. Sakr, A. G. Sánchez, D. Sapone, R. Scaramella, P. Schneider, T. Schrabback, M. Scodeggio, A. Secroun, E. Sefusatti, G. Seidel, S. Serrano, C. Sirignano, L. Stanco, J. Steinwagner, P. Tallada-Crespí, A. N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, I. Tutusaus, L. Valenziano, T. Vassallo, A. Veropalumbo, Y. Wang, J. Weller, G. Zamorani, J. Zoubian, E. Zucca, A. Biviano, A. Boucaud, E. Bozzo, C. Burigana, M. Calabrese, R. Farinelli, N. Mauri, V. Scottez, M. Tenti, M. Viel, M. Wiesmann, Y. Akrami, V. Allevato, S. Anselmi, M. Ballardini, A. Blanchard, S. Borgani, S. Bruton, R. Cabanac, A. Calabro, G. Cañas-Herrera, A. Cappi, C. S. Carvalho, T. Castro, K. C. Chambers, S. Contarini, A. R. Cooray, J. Coupon, O. Cucciati, G. Desprez, A. Díaz-Sánchez, S. Di Domizio, J. A. Escartin Vigo, S. Escoffier, A. G. Ferrari, P. G. Ferreira, I. Ferrero, F. Fornari, L. Gabarra, K. Ganga, J. García-Bellido, E. Gaztanaga, F. Giacomini, G. Gozaliasl, A. Gregorio, A. Hall, H. Hildebrandt, J. Hjorth, J. J. E. Kajava, V. Kansal, D. Karagiannis, C. C. Kirkpatrick, L. Legrand, G. Libet, A. Loureiro, G. Maggio, M. Magliocchetti, F. Mannucci, R. Maoli, C. J. A. P. Martins, S. Matthew, L. Maurin, R. B. Metcalf, P. Monaco, C. Moretti, G. Morgante, Nicholas A. Walton, J. Odier, L. Patrizii, M. Pöntinen, V. Popa, C. Porciani, D. Potter, I. Risso, P.-F. Rocci, M. Sahlén, A. Schneider, M. Sereno, P. Simon, A. Spurio Mancini, C. Tao, G. Testera, R. Teyssier, S. Toft, S. Tosi, A. Troja, M. Tucci, C. Valieri, J. Valiviita, D. Vergani, G. Verza\",\"doi\":\"10.1051/0004-6361/202452468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The <i>Euclid<i/> Space Telescope will image about 14 000 deg<sup>2<sup/> of the extragalactic sky at visible and near-infrared wavelengths, providing a dataset of unprecedented size and richness that will facilitate a multitude of studies into the evolution of galaxies. Although spectroscopy will also be available for some of the galaxies, in the vast majority of cases the main source of information will come from broadband images and data products thereof (i.e. photometry). Therefore, there is a pressing need to identify or develop scalable yet reliable methodologies to estimate the redshift and physical properties of galaxies using broadband photometry from <i>Euclid<i/>. Optionally, such methods could also include ground-based optical photometry. To address this need, we present a novel method developed as part of a ‘data challenge’ within the Euclid Collaboration to estimate the redshift, stellar mass, star-formation rate, specific star-formation rate, <i>E<i/>(<i>B<i/> − <i>V<i/>), and age of galaxies using mock <i>Euclid<i/> and ground-based photometry. The main novelty of our property-estimation pipeline is its use of the CatBoost implementation of gradient-boosted regression-trees together with chained regression and an intelligent, automatic optimisation of the training data. The pipeline also includes a computationally efficient method to estimate prediction uncertainties, and, in the absence of ground-truth labels, it provides accurate predictions for metrics of model performance up to <i>z<i/> ~ 2. We applied our pipeline to several datasets consisting of mock <i>Euclid<i/> broadband photometry and mock ground-based <i>ugriz<i/> photometry, with the objective of evaluating the performance of our methodology for estimating the redshift and physical properties of galaxies detected in the Euclid Wide Survey. The statistical metrics of prediction residuals vary depending on which mock catalogue and filters are tested. Nonetheless, the quality of our photometric redshift and physical property estimates are highly competitive overall, validating our modelling approach. However, at <i>z<i/> ≳ 3.5, the relative sparsity of galaxies resulted in unreliable redshift and physical property estimates, which we argue could be mitigated by building catalogues with better sampling of <i>z<i/> ≳ 3.5 galaxies or by switching to the use of spectral energy distribution fitting in this regime. We also find that the inclusion of ground-based optical photometry significantly improves the quality of the property estimation, highlighting the importance of combining <i>Euclid<i/> data with ancillary ground-based data from such surveys as the <i>Vera C. Rubin<i/> Observatory Legacy Survey of Space and Time and UNIONS.\",\"PeriodicalId\":8571,\"journal\":{\"name\":\"Astronomy & Astrophysics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy & Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202452468\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452468","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

欧几里得太空望远镜将在可见光和近红外波段拍摄约14000度的河外天空,提供前所未有的规模和丰富的数据集,这将促进对星系演化的大量研究。虽然光谱学也可用于某些星系,但在绝大多数情况下,主要信息来源将来自宽带图像及其数据产品(即光度测定)。因此,迫切需要确定或开发可扩展且可靠的方法来使用欧几里得的宽带光度法来估计星系的红移和物理特性。可选的是,这种方法还可以包括地面光学光度测定。为了满足这一需求,我们提出了一种新方法,作为欧几里得合作中“数据挑战”的一部分,使用模拟欧几里得和地面光度法来估计红移、恒星质量、恒星形成速率、特定恒星形成速率、E(B−V)和星系年龄。我们的属性估计管道的主要新颖之处在于它使用了CatBoost实现梯度增强回归树,以及链式回归和训练数据的智能自动优化。该管道还包括一种计算效率高的方法来估计预测不确定性,并且,在没有真值标签的情况下,它提供了高达z ~ 2的模型性能指标的准确预测。我们将我们的管道应用于几个数据集,包括模拟欧几里得宽带光度法和模拟地面ugriz光度法,目的是评估我们的方法在估计欧几里得大巡天中探测到的星系的红移和物理特性方面的性能。预测残差的统计度量根据所测试的模拟目录和过滤器而变化。尽管如此,我们的光度红移和物理性质估计的质量总体上具有很强的竞争力,验证了我们的建模方法。然而,在z > 3.5时,星系的相对稀疏性导致了不可靠的红移和物理性质估计,我们认为可以通过更好地采样z > 3.5星系来建立目录,或者通过转换到使用光谱能量分布拟合来缓解这一问题。我们还发现,包括地面光学光度测量,显著提高了属性估计的质量,突出了将欧氏数据与辅助地面数据相结合的重要性,这些数据来自Vera C. Rubin天文台的空间和时间遗产调查和union。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Euclid preparation
The Euclid Space Telescope will image about 14 000 deg2 of the extragalactic sky at visible and near-infrared wavelengths, providing a dataset of unprecedented size and richness that will facilitate a multitude of studies into the evolution of galaxies. Although spectroscopy will also be available for some of the galaxies, in the vast majority of cases the main source of information will come from broadband images and data products thereof (i.e. photometry). Therefore, there is a pressing need to identify or develop scalable yet reliable methodologies to estimate the redshift and physical properties of galaxies using broadband photometry from Euclid. Optionally, such methods could also include ground-based optical photometry. To address this need, we present a novel method developed as part of a ‘data challenge’ within the Euclid Collaboration to estimate the redshift, stellar mass, star-formation rate, specific star-formation rate, E(BV), and age of galaxies using mock Euclid and ground-based photometry. The main novelty of our property-estimation pipeline is its use of the CatBoost implementation of gradient-boosted regression-trees together with chained regression and an intelligent, automatic optimisation of the training data. The pipeline also includes a computationally efficient method to estimate prediction uncertainties, and, in the absence of ground-truth labels, it provides accurate predictions for metrics of model performance up to z ~ 2. We applied our pipeline to several datasets consisting of mock Euclid broadband photometry and mock ground-based ugriz photometry, with the objective of evaluating the performance of our methodology for estimating the redshift and physical properties of galaxies detected in the Euclid Wide Survey. The statistical metrics of prediction residuals vary depending on which mock catalogue and filters are tested. Nonetheless, the quality of our photometric redshift and physical property estimates are highly competitive overall, validating our modelling approach. However, at z ≳ 3.5, the relative sparsity of galaxies resulted in unreliable redshift and physical property estimates, which we argue could be mitigated by building catalogues with better sampling of z ≳ 3.5 galaxies or by switching to the use of spectral energy distribution fitting in this regime. We also find that the inclusion of ground-based optical photometry significantly improves the quality of the property estimation, highlighting the importance of combining Euclid data with ancillary ground-based data from such surveys as the Vera C. Rubin Observatory Legacy Survey of Space and Time and UNIONS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信