欧几里得准备

IF 5.8 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Abdurro’uf Abdurro’uf, C. Tortora, M. Baes, A. Nersesian, I. Kovačić, M. Bolzonella, A. Lançon, L. Bisigello, F. Annibali, M. N. Bremer, D. Carollo, C. J. Conselice, A. Enia, A. M. N. Ferguson, A. Ferré-Mateu, L. K. Hunt, E. Iodice, J. H. Knapen, A. Iovino, F. R. Marleau, R. F. Peletier, R. Ragusa, M. Rejkuba, A. S. G. Robotham, J. Román, T. Saifollahi, P. Salucci, M. Scodeggio, M. Siudek, A. van der Wel, K. Voggel, B. Altieri, S. Andreon, C. Baccigalupi, M. Baldi, S. Bardelli, A. Biviano, A. Bonchi, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, A. Caillat, S. Camera, G. Cañas-Herrera, V. Capobianco, C. Carbone, J. Carretero, S. Casas, M. Castellano, G. Castignani, S. Cavuoti, K. C. Chambers, A. Cimatti, C. Colodro-Conde, G. Congedo, L. Conversi, Y. Copin, F. Courbin, H. M. Courtois, M. Cropper, A. Da Silva, H. Degaudenzi, G. De Lucia, A. M. Di Giorgio, J. Dinis, H. Dole, F. Dubath, X. Dupac, S. Dusini, S. Escoffier, M. Farina, R. Farinelli, S. Farrens, F. Faustini, S. Ferriol, F. Finelli, S. Fotopoulou, M. Frailis, E. Franceschi, M. Fumana, S. Galeotta, B. Gillis, C. Giocoli, P. Gómez-Alvarez, J. Gracia-Carpio, A. Grazian, F. Grupp, W. Holmes, F. Hormuth, A. Hornstrup, P. Hudelot, K. Jahnke, M. Jhabvala, E. Keihänen, S. Kermiche, A. Kiessling, M. Kilbinger, B. Kubik, M. Kümmel, M. Kunz, H. Kurki-Suonio, A. M. C. Le Brun, S. Ligori, P. B. Lilje, V. Lindholm, I. Lloro, G. Mainetti, D. Maino, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovic, M. Martinelli, N. Martinet, F. Marulli, R. Massey, E. Medinaceli, S. Mei, M. Melchior, Y. Mellier, M. Meneghetti, E. Merlin, G. Meylan, A. Mora, M. Moresco, L. Moscardini, S.-M. Niemi, J. W. Nightingale, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, V. Pettorino, G. Polenta, M. Poncet, L. A. Popa, L. Pozzetti, F. Raison, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, E. Rossetti, R. Saglia, Z. Sakr, D. Sapone, B. Sartoris, M. Schirmer, P. Schneider, T. Schrabback, A. Secroun, E. Sefusatti, G. Seidel, S. Serrano, P. Simon, C. Sirignano, G. Sirri, L. Stanco, J. Steinwagner, P. Tallada-Crespí, A. N. Taylor, I. Tereno, S. Toft, R. Toledo-Moreo, F. Torradeflot, I. Tutusaus, L. Valenziano, J. Valiviita, T. Vassallo, G. Verdoes Kleijn, A. Veropalumbo, Y. Wang, J. Weller, G. Zamorani, E. Zucca, E. Bozzo, C. Burigana, M. Calabrese, D. Di Ferdinando, J. A. Escartin Vigo, S. Matthew, N. Mauri, M. Pöntinen, C. Porciani, V. Scottez, M. Tenti, M. Viel, M. Wiesmann, Y. Akrami, V. Allevato, S. Anselmi, M. Archidiacono, F. Atrio-Barandela, M. Ballardini, D. Bertacca, A. Blanchard, L. Blot, S. Borgani, M. L. Brown, S. Bruton, R. Cabanac, A. Calabro, A. Cappi, F. Caro, C. S. Carvalho, T. Castro, F. Cogato, T. Contini, A. R. Cooray, O. Cucciati, G. Desprez, A. Díaz-Sánchez, S. Di Domizio, A. G. Ferrari, I. Ferrero, A. Finoguenov, A. Fontana, F. Fornari, K. Ganga, J. García-Bellido, T. Gasparetto, E. Gaztanaga, F. Giacomini, F. Gianotti, G. Gozaliasl, A. Gregorio, M. Guidi, C. M. Gutierrez, A. Hall, S. Hemmati, H. Hildebrandt, J. Hjorth, M. Huertas-Company, A. Jimenez Muñoz, J. J. E. Kajava, Y. Kang, V. Kansal, D. Karagiannis, C. C. Kirkpatrick, S. Kruk, M. Lattanzi, S. Lee, J. Le Graet, L. Legrand, M. Lembo, J. Lesgourgues, T. I. Liaudat, A. Loureiro, J. Macias-Perez, M. Magliocchetti, F. Mannucci, R. Maoli, J. Martín-Fleitas, C. J. A. P. Martins, L. Maurin, R. B. Metcalf, M. Miluzio, P. Monaco, C. Moretti, G. Morgante, K. Naidoo, Nicholas A. Walton, K. Paterson, L. Patrizii, A. Pisani, V. Popa, D. Potter, I. Risso, P.-F. Rocci, M. Sahlén, E. Sarpa, A. Schneider, D. Sciotti, E. Sellentin, M. Sereno, K. Tanidis, C. Tao, G. Testera, R. Teyssier, S. Tosi, A. Troja, M. Tucci, C. Valieri, D. Vergani, G. Verza, P. Vielzeuf
{"title":"欧几里得准备","authors":"Abdurro’uf Abdurro’uf, C. Tortora, M. Baes, A. Nersesian, I. Kovačić, M. Bolzonella, A. Lançon, L. Bisigello, F. Annibali, M. N. Bremer, D. Carollo, C. J. Conselice, A. Enia, A. M. N. Ferguson, A. Ferré-Mateu, L. K. Hunt, E. Iodice, J. H. Knapen, A. Iovino, F. R. Marleau, R. F. Peletier, R. Ragusa, M. Rejkuba, A. S. G. Robotham, J. Román, T. Saifollahi, P. Salucci, M. Scodeggio, M. Siudek, A. van der Wel, K. Voggel, B. Altieri, S. Andreon, C. Baccigalupi, M. Baldi, S. Bardelli, A. Biviano, A. Bonchi, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, A. Caillat, S. Camera, G. Cañas-Herrera, V. Capobianco, C. Carbone, J. Carretero, S. Casas, M. Castellano, G. Castignani, S. Cavuoti, K. C. Chambers, A. Cimatti, C. Colodro-Conde, G. Congedo, L. Conversi, Y. Copin, F. Courbin, H. M. Courtois, M. Cropper, A. Da Silva, H. Degaudenzi, G. De Lucia, A. M. Di Giorgio, J. Dinis, H. Dole, F. Dubath, X. Dupac, S. Dusini, S. Escoffier, M. Farina, R. Farinelli, S. Farrens, F. Faustini, S. Ferriol, F. Finelli, S. Fotopoulou, M. Frailis, E. Franceschi, M. Fumana, S. Galeotta, B. Gillis, C. Giocoli, P. Gómez-Alvarez, J. Gracia-Carpio, A. Grazian, F. Grupp, W. Holmes, F. Hormuth, A. Hornstrup, P. Hudelot, K. Jahnke, M. Jhabvala, E. Keihänen, S. Kermiche, A. Kiessling, M. Kilbinger, B. Kubik, M. Kümmel, M. Kunz, H. Kurki-Suonio, A. M. C. Le Brun, S. Ligori, P. B. Lilje, V. Lindholm, I. Lloro, G. Mainetti, D. Maino, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovic, M. Martinelli, N. Martinet, F. Marulli, R. Massey, E. Medinaceli, S. Mei, M. Melchior, Y. Mellier, M. Meneghetti, E. Merlin, G. Meylan, A. Mora, M. Moresco, L. Moscardini, S.-M. Niemi, J. W. Nightingale, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, V. Pettorino, G. Polenta, M. Poncet, L. A. Popa, L. Pozzetti, F. Raison, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, E. Rossetti, R. Saglia, Z. Sakr, D. Sapone, B. Sartoris, M. Schirmer, P. Schneider, T. Schrabback, A. Secroun, E. Sefusatti, G. Seidel, S. Serrano, P. Simon, C. Sirignano, G. Sirri, L. Stanco, J. Steinwagner, P. Tallada-Crespí, A. N. Taylor, I. Tereno, S. Toft, R. Toledo-Moreo, F. Torradeflot, I. Tutusaus, L. Valenziano, J. Valiviita, T. Vassallo, G. Verdoes Kleijn, A. Veropalumbo, Y. Wang, J. Weller, G. Zamorani, E. Zucca, E. Bozzo, C. Burigana, M. Calabrese, D. Di Ferdinando, J. A. Escartin Vigo, S. Matthew, N. Mauri, M. Pöntinen, C. Porciani, V. Scottez, M. Tenti, M. Viel, M. Wiesmann, Y. Akrami, V. Allevato, S. Anselmi, M. Archidiacono, F. Atrio-Barandela, M. Ballardini, D. Bertacca, A. Blanchard, L. Blot, S. Borgani, M. L. Brown, S. Bruton, R. Cabanac, A. Calabro, A. Cappi, F. Caro, C. S. Carvalho, T. Castro, F. Cogato, T. Contini, A. R. Cooray, O. Cucciati, G. Desprez, A. Díaz-Sánchez, S. Di Domizio, A. G. Ferrari, I. Ferrero, A. Finoguenov, A. Fontana, F. Fornari, K. Ganga, J. García-Bellido, T. Gasparetto, E. Gaztanaga, F. Giacomini, F. Gianotti, G. Gozaliasl, A. Gregorio, M. Guidi, C. M. Gutierrez, A. Hall, S. Hemmati, H. Hildebrandt, J. Hjorth, M. Huertas-Company, A. Jimenez Muñoz, J. J. E. Kajava, Y. Kang, V. Kansal, D. Karagiannis, C. C. Kirkpatrick, S. Kruk, M. Lattanzi, S. Lee, J. Le Graet, L. Legrand, M. Lembo, J. Lesgourgues, T. I. Liaudat, A. Loureiro, J. Macias-Perez, M. Magliocchetti, F. Mannucci, R. Maoli, J. Martín-Fleitas, C. J. A. P. Martins, L. Maurin, R. B. Metcalf, M. Miluzio, P. Monaco, C. Moretti, G. Morgante, K. Naidoo, Nicholas A. Walton, K. Paterson, L. Patrizii, A. Pisani, V. Popa, D. Potter, I. Risso, P.-F. Rocci, M. Sahlén, E. Sarpa, A. Schneider, D. Sciotti, E. Sellentin, M. Sereno, K. Tanidis, C. Tao, G. Testera, R. Teyssier, S. Tosi, A. Troja, M. Tucci, C. Valieri, D. Vergani, G. Verza, P. Vielzeuf","doi":"10.1051/0004-6361/202554516","DOIUrl":null,"url":null,"abstract":"The European Space Agency’s <i>Euclid<i/> mission will observe approximately 14000 deg<sup>2<sup/> of the extragalactic sky and deliver high-quality imaging of a large number of galaxies. The depth and high spatial resolution of the data will enable a detailed analysis of the stellar population properties of local galaxies through spatially resolved spectral energy distribution (SED) fitting. In this study, we test our pipeline for spatially resolved SED fitting using synthetic images of <i>Euclid<i/>, LSST, and GALEX generated from the TNG50 simulation using the SKIRT 3D radiative transfer code. Our pipeline uses functionalities in piXedfit for processing the simulated data cubes and carrying out SED fitting. We apply our pipeline to 25 simulated galaxies at <i>z<i/> ∼ 0 to recover their resolved stellar population properties. For each galaxy, we produce three types of data cubes: GALEX + LSST + <i>Euclid<i/>, LSST + <i>Euclid<i/>, and <i>Euclid<i/>-only. We performed the SED fitting tests with two stellar population synthesis (SPS) models in a Bayesian framework. Because the age, metallicity (<i>Z<i/>), and dust attenuation estimates are biased when applying only classical formulations of flat priors (even with the combined GALEX + LSST + <i>Euclid<i/> data), we examined the effects of additional physically motivated priors in the forms of mass-age and mass-metallicity relations, constructed using a combination of empirical and simulated data. Stellar-mass surface densities can be recovered well using any of the three data cubes, regardless of the SPS model and prior variations. The new priors then significantly improve the measurements of mass-weighted age and <i>Z<i/> compared to results obtained without priors, but they may play an excessive role compared to the data in determining the outcome when no ultraviolet (UV) data is available. Compared to varying the spectral extent of the data cube or including and discarding the additional priors, replacing one SPS model family with the other has little effect on the results. The spatially resolved SED fitting method is powerful for mapping the stellar population properties of many galaxies with the current abundance of high-quality imaging data. Our study re-emphasizes the gain added by including multi-wavelength data from ancillary surveys and the roles of priors in Bayesian SED fitting. With the <i>Euclid<i/> data alone, we will be able to generate complete and deep stellar mass maps of galaxies in the local Universe (<i>z<i/> ≲ 0.1), exploiting the telescope’s wide field, near-infrared sensitivity, and high spatial resolution.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"7 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Euclid preparation\",\"authors\":\"Abdurro’uf Abdurro’uf, C. Tortora, M. Baes, A. Nersesian, I. Kovačić, M. Bolzonella, A. Lançon, L. Bisigello, F. Annibali, M. N. Bremer, D. Carollo, C. J. Conselice, A. Enia, A. M. N. Ferguson, A. Ferré-Mateu, L. K. Hunt, E. Iodice, J. H. Knapen, A. Iovino, F. R. Marleau, R. F. Peletier, R. Ragusa, M. Rejkuba, A. S. G. Robotham, J. Román, T. Saifollahi, P. Salucci, M. Scodeggio, M. Siudek, A. van der Wel, K. Voggel, B. Altieri, S. Andreon, C. Baccigalupi, M. Baldi, S. Bardelli, A. Biviano, A. Bonchi, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, A. Caillat, S. Camera, G. Cañas-Herrera, V. Capobianco, C. Carbone, J. Carretero, S. Casas, M. Castellano, G. Castignani, S. Cavuoti, K. C. Chambers, A. Cimatti, C. Colodro-Conde, G. Congedo, L. Conversi, Y. Copin, F. Courbin, H. M. Courtois, M. Cropper, A. Da Silva, H. Degaudenzi, G. De Lucia, A. M. Di Giorgio, J. Dinis, H. Dole, F. Dubath, X. Dupac, S. Dusini, S. Escoffier, M. Farina, R. Farinelli, S. Farrens, F. Faustini, S. Ferriol, F. Finelli, S. Fotopoulou, M. Frailis, E. Franceschi, M. Fumana, S. Galeotta, B. Gillis, C. Giocoli, P. Gómez-Alvarez, J. Gracia-Carpio, A. Grazian, F. Grupp, W. Holmes, F. Hormuth, A. Hornstrup, P. Hudelot, K. Jahnke, M. Jhabvala, E. Keihänen, S. Kermiche, A. Kiessling, M. Kilbinger, B. Kubik, M. Kümmel, M. Kunz, H. Kurki-Suonio, A. M. C. Le Brun, S. Ligori, P. B. Lilje, V. Lindholm, I. Lloro, G. Mainetti, D. Maino, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovic, M. Martinelli, N. Martinet, F. Marulli, R. Massey, E. Medinaceli, S. Mei, M. Melchior, Y. Mellier, M. Meneghetti, E. Merlin, G. Meylan, A. Mora, M. Moresco, L. Moscardini, S.-M. Niemi, J. W. Nightingale, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, V. Pettorino, G. Polenta, M. Poncet, L. A. Popa, L. Pozzetti, F. Raison, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, E. Rossetti, R. Saglia, Z. Sakr, D. Sapone, B. Sartoris, M. Schirmer, P. Schneider, T. Schrabback, A. Secroun, E. Sefusatti, G. Seidel, S. Serrano, P. Simon, C. Sirignano, G. Sirri, L. Stanco, J. Steinwagner, P. Tallada-Crespí, A. N. Taylor, I. Tereno, S. Toft, R. Toledo-Moreo, F. Torradeflot, I. Tutusaus, L. Valenziano, J. Valiviita, T. Vassallo, G. Verdoes Kleijn, A. Veropalumbo, Y. Wang, J. Weller, G. Zamorani, E. Zucca, E. Bozzo, C. Burigana, M. Calabrese, D. Di Ferdinando, J. A. Escartin Vigo, S. Matthew, N. Mauri, M. Pöntinen, C. Porciani, V. Scottez, M. Tenti, M. Viel, M. Wiesmann, Y. Akrami, V. Allevato, S. Anselmi, M. Archidiacono, F. Atrio-Barandela, M. Ballardini, D. Bertacca, A. Blanchard, L. Blot, S. Borgani, M. L. Brown, S. Bruton, R. Cabanac, A. Calabro, A. Cappi, F. Caro, C. S. Carvalho, T. Castro, F. Cogato, T. Contini, A. R. Cooray, O. Cucciati, G. Desprez, A. Díaz-Sánchez, S. Di Domizio, A. G. Ferrari, I. Ferrero, A. Finoguenov, A. Fontana, F. Fornari, K. Ganga, J. García-Bellido, T. Gasparetto, E. Gaztanaga, F. Giacomini, F. Gianotti, G. Gozaliasl, A. Gregorio, M. Guidi, C. M. Gutierrez, A. Hall, S. Hemmati, H. Hildebrandt, J. Hjorth, M. Huertas-Company, A. Jimenez Muñoz, J. J. E. Kajava, Y. Kang, V. Kansal, D. Karagiannis, C. C. Kirkpatrick, S. Kruk, M. Lattanzi, S. Lee, J. Le Graet, L. Legrand, M. Lembo, J. Lesgourgues, T. I. Liaudat, A. Loureiro, J. Macias-Perez, M. Magliocchetti, F. Mannucci, R. Maoli, J. Martín-Fleitas, C. J. A. P. Martins, L. Maurin, R. B. Metcalf, M. Miluzio, P. Monaco, C. Moretti, G. Morgante, K. Naidoo, Nicholas A. Walton, K. Paterson, L. Patrizii, A. Pisani, V. Popa, D. Potter, I. Risso, P.-F. Rocci, M. Sahlén, E. Sarpa, A. Schneider, D. Sciotti, E. Sellentin, M. Sereno, K. Tanidis, C. Tao, G. Testera, R. Teyssier, S. Tosi, A. Troja, M. Tucci, C. Valieri, D. Vergani, G. Verza, P. Vielzeuf\",\"doi\":\"10.1051/0004-6361/202554516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The European Space Agency’s <i>Euclid<i/> mission will observe approximately 14000 deg<sup>2<sup/> of the extragalactic sky and deliver high-quality imaging of a large number of galaxies. The depth and high spatial resolution of the data will enable a detailed analysis of the stellar population properties of local galaxies through spatially resolved spectral energy distribution (SED) fitting. In this study, we test our pipeline for spatially resolved SED fitting using synthetic images of <i>Euclid<i/>, LSST, and GALEX generated from the TNG50 simulation using the SKIRT 3D radiative transfer code. Our pipeline uses functionalities in piXedfit for processing the simulated data cubes and carrying out SED fitting. We apply our pipeline to 25 simulated galaxies at <i>z<i/> ∼ 0 to recover their resolved stellar population properties. For each galaxy, we produce three types of data cubes: GALEX + LSST + <i>Euclid<i/>, LSST + <i>Euclid<i/>, and <i>Euclid<i/>-only. We performed the SED fitting tests with two stellar population synthesis (SPS) models in a Bayesian framework. Because the age, metallicity (<i>Z<i/>), and dust attenuation estimates are biased when applying only classical formulations of flat priors (even with the combined GALEX + LSST + <i>Euclid<i/> data), we examined the effects of additional physically motivated priors in the forms of mass-age and mass-metallicity relations, constructed using a combination of empirical and simulated data. Stellar-mass surface densities can be recovered well using any of the three data cubes, regardless of the SPS model and prior variations. The new priors then significantly improve the measurements of mass-weighted age and <i>Z<i/> compared to results obtained without priors, but they may play an excessive role compared to the data in determining the outcome when no ultraviolet (UV) data is available. Compared to varying the spectral extent of the data cube or including and discarding the additional priors, replacing one SPS model family with the other has little effect on the results. The spatially resolved SED fitting method is powerful for mapping the stellar population properties of many galaxies with the current abundance of high-quality imaging data. Our study re-emphasizes the gain added by including multi-wavelength data from ancillary surveys and the roles of priors in Bayesian SED fitting. With the <i>Euclid<i/> data alone, we will be able to generate complete and deep stellar mass maps of galaxies in the local Universe (<i>z<i/> ≲ 0.1), exploiting the telescope’s wide field, near-infrared sensitivity, and high spatial resolution.\",\"PeriodicalId\":8571,\"journal\":{\"name\":\"Astronomy & Astrophysics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy & Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202554516\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202554516","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

欧洲航天局的欧几里得任务将观测大约14000度的河外天空,并提供大量星系的高质量图像。数据的深度和高空间分辨率将使我们能够通过空间分辨光谱能量分布(SED)拟合来详细分析局部星系的恒星种群特性。在这项研究中,我们使用SKIRT 3D辐射传输代码通过TNG50模拟生成的Euclid、LSST和GALEX合成图像来测试我们的管道空间分辨SED拟合。我们的管道使用piXedfit中的功能来处理模拟数据立方体并执行SED拟合。我们将我们的管道应用于z ~ 0的25个模拟星系,以恢复它们的分辨恒星群特性。对于每个星系,我们生成了三种类型的数据立方体:GALEX + LSST + Euclid, LSST + Euclid和仅Euclid。我们在贝叶斯框架下对两个恒星种群合成(SPS)模型进行了SED拟合测试。由于年龄、金属丰度(Z)和粉尘衰减估计在仅应用平坦先验的经典公式时是有偏差的(即使结合GALEX + LSST + Euclid数据),我们以质量年龄和质量金属丰度关系的形式检查了额外的物理驱动先验的影响,使用经验和模拟数据的组合构建。无论SPS模型和先前的变化如何,使用三个数据立方体中的任何一个都可以很好地恢复恒星质量表面密度。与没有先验的结果相比,新的先验显著改善了质量加权年龄和Z的测量结果,但在没有紫外线(UV)数据可用的情况下,与数据相比,它们可能在决定结果方面发挥了过度的作用。与改变数据立方体的光谱范围或包括和丢弃额外的先验相比,用另一个SPS模型族替换另一个模型族对结果的影响很小。利用当前丰富的高质量成像数据,空间分辨SED拟合方法对于绘制许多星系的恒星种群特性具有强大的功能。我们的研究再次强调了通过包括来自辅助调查的多波长数据和先验在贝叶斯SED拟合中的作用所增加的增益。仅凭欧几里得数据,我们就可以利用望远镜的宽视场、近红外灵敏度和高空间分辨率,在局部宇宙(z > 0.1)中生成完整而深入的星系恒星质量图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Euclid preparation
The European Space Agency’s Euclid mission will observe approximately 14000 deg2 of the extragalactic sky and deliver high-quality imaging of a large number of galaxies. The depth and high spatial resolution of the data will enable a detailed analysis of the stellar population properties of local galaxies through spatially resolved spectral energy distribution (SED) fitting. In this study, we test our pipeline for spatially resolved SED fitting using synthetic images of Euclid, LSST, and GALEX generated from the TNG50 simulation using the SKIRT 3D radiative transfer code. Our pipeline uses functionalities in piXedfit for processing the simulated data cubes and carrying out SED fitting. We apply our pipeline to 25 simulated galaxies at z ∼ 0 to recover their resolved stellar population properties. For each galaxy, we produce three types of data cubes: GALEX + LSST + Euclid, LSST + Euclid, and Euclid-only. We performed the SED fitting tests with two stellar population synthesis (SPS) models in a Bayesian framework. Because the age, metallicity (Z), and dust attenuation estimates are biased when applying only classical formulations of flat priors (even with the combined GALEX + LSST + Euclid data), we examined the effects of additional physically motivated priors in the forms of mass-age and mass-metallicity relations, constructed using a combination of empirical and simulated data. Stellar-mass surface densities can be recovered well using any of the three data cubes, regardless of the SPS model and prior variations. The new priors then significantly improve the measurements of mass-weighted age and Z compared to results obtained without priors, but they may play an excessive role compared to the data in determining the outcome when no ultraviolet (UV) data is available. Compared to varying the spectral extent of the data cube or including and discarding the additional priors, replacing one SPS model family with the other has little effect on the results. The spatially resolved SED fitting method is powerful for mapping the stellar population properties of many galaxies with the current abundance of high-quality imaging data. Our study re-emphasizes the gain added by including multi-wavelength data from ancillary surveys and the roles of priors in Bayesian SED fitting. With the Euclid data alone, we will be able to generate complete and deep stellar mass maps of galaxies in the local Universe (z ≲ 0.1), exploiting the telescope’s wide field, near-infrared sensitivity, and high spatial resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信