Kai-Kai Duan, Xiao Wang, Wen-Hao Li, Zhi-Hui Xu, Yue-Lin Sming Tsai and Yi-Zhong Fan
{"title":"太阳调制对AMS-02反质子过剩的影响","authors":"Kai-Kai Duan, Xiao Wang, Wen-Hao Li, Zhi-Hui Xu, Yue-Lin Sming Tsai and Yi-Zhong Fan","doi":"10.1088/1475-7516/2025/10/049","DOIUrl":null,"url":null,"abstract":"This study examines the impact of solar modulation on the antiproton excess observed by AMS-02, which may indicate dark matter (DM) annihilation. We analyze three solar modulation models: the force-field approximation (FFA), a time-, charge-, and rigidity-dependent FFA, and a three-dimensional numerical simulation based on the Parker transport equation. Based on AMS-02 latest antiproton data (2025), our results show that the significance of the DM signal is sensitive to the chosen modulation model, with a 2σ signal for the FFA (4σ if including data from H, He, C, O, B/C, and B/O) and a reduced significance for more complex models. We also address systematic uncertainties using two methods: the add-in-quadrature method, which assumes uncorrelated uncertainties between energy bins, and the nuisance parameter method, which treats systematic uncertainties as nuisance parameters during the fitting process. Fitted to AMS-02 antiproton data, DM annihilation to the bb̅ scenario with three different solar modulation models shows that the add-in-quadrature method causes overfitting, whereas the nuisance parameters approach leads to underfitting. Statistically, the signal region of the FFA model using the add-in-quadrature method is the most reliable. This work highlights the need for refined solar modulation models and a better treatment of uncertainties for a conclusive interpretation of the AMS-02 data.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"40 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scrutinizing the impact of the solar modulation on AMS-02 antiproton excess\",\"authors\":\"Kai-Kai Duan, Xiao Wang, Wen-Hao Li, Zhi-Hui Xu, Yue-Lin Sming Tsai and Yi-Zhong Fan\",\"doi\":\"10.1088/1475-7516/2025/10/049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the impact of solar modulation on the antiproton excess observed by AMS-02, which may indicate dark matter (DM) annihilation. We analyze three solar modulation models: the force-field approximation (FFA), a time-, charge-, and rigidity-dependent FFA, and a three-dimensional numerical simulation based on the Parker transport equation. Based on AMS-02 latest antiproton data (2025), our results show that the significance of the DM signal is sensitive to the chosen modulation model, with a 2σ signal for the FFA (4σ if including data from H, He, C, O, B/C, and B/O) and a reduced significance for more complex models. We also address systematic uncertainties using two methods: the add-in-quadrature method, which assumes uncorrelated uncertainties between energy bins, and the nuisance parameter method, which treats systematic uncertainties as nuisance parameters during the fitting process. Fitted to AMS-02 antiproton data, DM annihilation to the bb̅ scenario with three different solar modulation models shows that the add-in-quadrature method causes overfitting, whereas the nuisance parameters approach leads to underfitting. Statistically, the signal region of the FFA model using the add-in-quadrature method is the most reliable. This work highlights the need for refined solar modulation models and a better treatment of uncertainties for a conclusive interpretation of the AMS-02 data.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/10/049\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/10/049","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Scrutinizing the impact of the solar modulation on AMS-02 antiproton excess
This study examines the impact of solar modulation on the antiproton excess observed by AMS-02, which may indicate dark matter (DM) annihilation. We analyze three solar modulation models: the force-field approximation (FFA), a time-, charge-, and rigidity-dependent FFA, and a three-dimensional numerical simulation based on the Parker transport equation. Based on AMS-02 latest antiproton data (2025), our results show that the significance of the DM signal is sensitive to the chosen modulation model, with a 2σ signal for the FFA (4σ if including data from H, He, C, O, B/C, and B/O) and a reduced significance for more complex models. We also address systematic uncertainties using two methods: the add-in-quadrature method, which assumes uncorrelated uncertainties between energy bins, and the nuisance parameter method, which treats systematic uncertainties as nuisance parameters during the fitting process. Fitted to AMS-02 antiproton data, DM annihilation to the bb̅ scenario with three different solar modulation models shows that the add-in-quadrature method causes overfitting, whereas the nuisance parameters approach leads to underfitting. Statistically, the signal region of the FFA model using the add-in-quadrature method is the most reliable. This work highlights the need for refined solar modulation models and a better treatment of uncertainties for a conclusive interpretation of the AMS-02 data.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.