一个多用户多机器人多目标多设备人机交互操作基准。

IF 3 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2025-09-25 eCollection Date: 2025-01-01 DOI:10.3389/frobt.2025.1528754
Akito Yoshida, Rousslan Fernand Julien Dossa, Marina Di Vincenzo, Shivakanth Sujit, Hannah Douglas, Kai Arulkumaran
{"title":"一个多用户多机器人多目标多设备人机交互操作基准。","authors":"Akito Yoshida, Rousslan Fernand Julien Dossa, Marina Di Vincenzo, Shivakanth Sujit, Hannah Douglas, Kai Arulkumaran","doi":"10.3389/frobt.2025.1528754","DOIUrl":null,"url":null,"abstract":"<p><p>One weakness of human-robot interaction (HRI) research is the lack of reproducible results, due to the lack of standardised benchmarks. In this work we introduce a multi-user multi-robot multi-goal multi-device manipulation benchmark (M4Bench), a flexible HRI platform in which multiple users can direct either a single-or multiple-simulated robots to perform a multi-goal pick-and-place task. Our software exposes a web-based visual interface, with support for mouse, keyboard, gamepad, eye tracker and electromyograph/electroencephalograph (EMG/EEG) user inputs. It can be further extended using native browser libraries or WebSocket interfaces, allowing researchers to add support for their own devices. We also provide tracking for several HRI metrics, such as task completion and command selection time, enabling quantitative comparisons between different user interfaces and devices. We demonstrate the utility of our benchmark with a user study (n = 50) conducted to compare five different input devices, and also compare single-vs. multi-user control. In the pick-and-place task, we found that users performed worse when using the eye tracker + EMG device pair, as compared to mouse + keyboard or gamepad + gamepad, over four quantitative metrics (corrected p <math><mrow><mo><</mo></mrow> </math> 0.001). Our software is available at https://github.com/arayabrain/m4bench.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1528754"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12507559/pdf/","citationCount":"0","resultStr":"{\"title\":\"A multi-user multi-robot multi-goal multi-device human-robot interaction manipulation benchmark.\",\"authors\":\"Akito Yoshida, Rousslan Fernand Julien Dossa, Marina Di Vincenzo, Shivakanth Sujit, Hannah Douglas, Kai Arulkumaran\",\"doi\":\"10.3389/frobt.2025.1528754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One weakness of human-robot interaction (HRI) research is the lack of reproducible results, due to the lack of standardised benchmarks. In this work we introduce a multi-user multi-robot multi-goal multi-device manipulation benchmark (M4Bench), a flexible HRI platform in which multiple users can direct either a single-or multiple-simulated robots to perform a multi-goal pick-and-place task. Our software exposes a web-based visual interface, with support for mouse, keyboard, gamepad, eye tracker and electromyograph/electroencephalograph (EMG/EEG) user inputs. It can be further extended using native browser libraries or WebSocket interfaces, allowing researchers to add support for their own devices. We also provide tracking for several HRI metrics, such as task completion and command selection time, enabling quantitative comparisons between different user interfaces and devices. We demonstrate the utility of our benchmark with a user study (n = 50) conducted to compare five different input devices, and also compare single-vs. multi-user control. In the pick-and-place task, we found that users performed worse when using the eye tracker + EMG device pair, as compared to mouse + keyboard or gamepad + gamepad, over four quantitative metrics (corrected p <math><mrow><mo><</mo></mrow> </math> 0.001). Our software is available at https://github.com/arayabrain/m4bench.</p>\",\"PeriodicalId\":47597,\"journal\":{\"name\":\"Frontiers in Robotics and AI\",\"volume\":\"12 \",\"pages\":\"1528754\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12507559/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Robotics and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frobt.2025.1528754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1528754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

人机交互(HRI)研究的一个弱点是缺乏可重复的结果,由于缺乏标准化的基准。在这项工作中,我们介绍了一个多用户多机器人多目标多设备操作基准(M4Bench),这是一个灵活的HRI平台,其中多个用户可以指导单个或多个模拟机器人执行多目标拾取和放置任务。我们的软件展示了一个基于web的可视化界面,支持鼠标,键盘,手柄,眼动仪和肌电/脑电图(EMG/EEG)用户输入。它可以使用本地浏览器库或WebSocket接口进一步扩展,允许研究人员为自己的设备添加支持。我们还提供了对几个HRI指标的跟踪,例如任务完成和命令选择时间,从而可以在不同的用户界面和设备之间进行定量比较。我们通过一项用户研究(n = 50)来演示基准测试的实用性,该研究对五种不同的输入设备进行了比较,并对单个设备与单个设备进行了比较。多用户控制。在拾取和放置任务中,我们发现,与鼠标+键盘或手柄+手柄相比,使用眼动仪+肌电图设备对时,用户在四个定量指标上的表现更差(校正p 0.001)。我们的软件可在https://github.com/arayabrain/m4bench上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-user multi-robot multi-goal multi-device human-robot interaction manipulation benchmark.

One weakness of human-robot interaction (HRI) research is the lack of reproducible results, due to the lack of standardised benchmarks. In this work we introduce a multi-user multi-robot multi-goal multi-device manipulation benchmark (M4Bench), a flexible HRI platform in which multiple users can direct either a single-or multiple-simulated robots to perform a multi-goal pick-and-place task. Our software exposes a web-based visual interface, with support for mouse, keyboard, gamepad, eye tracker and electromyograph/electroencephalograph (EMG/EEG) user inputs. It can be further extended using native browser libraries or WebSocket interfaces, allowing researchers to add support for their own devices. We also provide tracking for several HRI metrics, such as task completion and command selection time, enabling quantitative comparisons between different user interfaces and devices. We demonstrate the utility of our benchmark with a user study (n = 50) conducted to compare five different input devices, and also compare single-vs. multi-user control. In the pick-and-place task, we found that users performed worse when using the eye tracker + EMG device pair, as compared to mouse + keyboard or gamepad + gamepad, over four quantitative metrics (corrected p < 0.001). Our software is available at https://github.com/arayabrain/m4bench.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信