真实世界的证据:将真实世界的数据整合到临床研究框架中的方法。

Sachin Kale, Arvind Vatkar, Ojasv Gehilot, Ashok Shyam
{"title":"真实世界的证据:将真实世界的数据整合到临床研究框架中的方法。","authors":"Sachin Kale, Arvind Vatkar, Ojasv Gehilot, Ashok Shyam","doi":"10.13107/jocr.2025.v15.i10.6138","DOIUrl":null,"url":null,"abstract":"<p><p>Real-world evidence (RWE), derived from real-world data (RWD), is transforming clinical research by complementing traditional randomized controlled trials. With diverse data sources such as electronic health records, patient registries, and wearable devices, RWE offers insights that reflect everyday clinical practice. Despite challenges like unstructured data, bias, and privacy concerns, advances in artificial intelligence, machine learning, and data standardization enable meaningful analysis. Regulatory frameworks, including India's Digital Personal Data Protection Act, reinforce ethical use of patient data. By refining methodologies and fostering collaboration, RWE provides valuable evidence for regulatory decisions, personalized medicine, and enhanced patient care outcomes.</p>","PeriodicalId":16647,"journal":{"name":"Journal of Orthopaedic Case Reports","volume":"15 10","pages":"6-9"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12514902/pdf/","citationCount":"0","resultStr":"{\"title\":\"Real-World Evidence: Methodologies for Integrating Real-World Data into Clinical Research Frameworks.\",\"authors\":\"Sachin Kale, Arvind Vatkar, Ojasv Gehilot, Ashok Shyam\",\"doi\":\"10.13107/jocr.2025.v15.i10.6138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Real-world evidence (RWE), derived from real-world data (RWD), is transforming clinical research by complementing traditional randomized controlled trials. With diverse data sources such as electronic health records, patient registries, and wearable devices, RWE offers insights that reflect everyday clinical practice. Despite challenges like unstructured data, bias, and privacy concerns, advances in artificial intelligence, machine learning, and data standardization enable meaningful analysis. Regulatory frameworks, including India's Digital Personal Data Protection Act, reinforce ethical use of patient data. By refining methodologies and fostering collaboration, RWE provides valuable evidence for regulatory decisions, personalized medicine, and enhanced patient care outcomes.</p>\",\"PeriodicalId\":16647,\"journal\":{\"name\":\"Journal of Orthopaedic Case Reports\",\"volume\":\"15 10\",\"pages\":\"6-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12514902/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orthopaedic Case Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13107/jocr.2025.v15.i10.6138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Case Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13107/jocr.2025.v15.i10.6138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

来自真实世界数据(RWD)的真实世界证据(RWE)正在通过补充传统的随机对照试验来改变临床研究。通过电子健康记录、患者登记和可穿戴设备等多种数据源,RWE提供反映日常临床实践的见解。尽管存在非结构化数据、偏见和隐私问题等挑战,但人工智能、机器学习和数据标准化的进步使有意义的分析成为可能。监管框架,包括印度的《数字个人数据保护法》,加强了对患者数据的道德使用。通过改进方法和促进合作,莱茵集团为监管决策、个性化医疗和改善患者护理结果提供了有价值的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-World Evidence: Methodologies for Integrating Real-World Data into Clinical Research Frameworks.

Real-world evidence (RWE), derived from real-world data (RWD), is transforming clinical research by complementing traditional randomized controlled trials. With diverse data sources such as electronic health records, patient registries, and wearable devices, RWE offers insights that reflect everyday clinical practice. Despite challenges like unstructured data, bias, and privacy concerns, advances in artificial intelligence, machine learning, and data standardization enable meaningful analysis. Regulatory frameworks, including India's Digital Personal Data Protection Act, reinforce ethical use of patient data. By refining methodologies and fostering collaboration, RWE provides valuable evidence for regulatory decisions, personalized medicine, and enhanced patient care outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
128
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信