Arsun Bektas, Shepherd H Schurman, Julián Candia, Olaya Santiago-Fernández, Susmita Kaushik, Ana Maria Cuervo, Luigi Ferrucci
{"title":"自噬的保存可能是健康衰老背后的机制。","authors":"Arsun Bektas, Shepherd H Schurman, Julián Candia, Olaya Santiago-Fernández, Susmita Kaushik, Ana Maria Cuervo, Luigi Ferrucci","doi":"10.1111/acel.70246","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy is intricately linked with protective cellular processes, including mitochondrial function, proteostasis, and cellular senescence. Animal studies have indicated that autophagy becomes dysfunctional with aging and may contribute to T cell immunosenescence. In humans, it remains unclear whether autophagy is impaired in CD4<sup>+</sup> T cells as people age. To answer this question, we examined basal and inducible autophagic activity in a series of experiments comparing CD4<sup>+</sup> T cells from younger (23-35 years old) and older (67-93 years old) healthy donors. We used immunofluorescence to detect LC3 (a marker of autophagosomes and autolysosomes) and LAMP2 (a marker of endolysosomes) in conjunction with bafilomycin A<sub>1</sub> (which inhibits the acidification of lysosomes) and CCCP (a mitochondrial uncoupler) to manipulate autophagic flux. We found a significantly higher autophagy flux in CD4<sup>+</sup> T cells from older compared to younger donors and a higher number of LC3<sup>+</sup> compartments among older donors. Since the overall amount of autophagosomes degraded was comparable between the two groups, we concluded that autophagosome biogenesis was reduced in the older group. Rather than a decline, our findings in healthy older donors point toward a compensatory enhancement of human CD4<sup>+</sup> T cell autophagy with age, which may be a mechanism behind healthy aging.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70246"},"PeriodicalIF":7.1000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preservation of Autophagy May Be a Mechanism Behind Healthy Aging.\",\"authors\":\"Arsun Bektas, Shepherd H Schurman, Julián Candia, Olaya Santiago-Fernández, Susmita Kaushik, Ana Maria Cuervo, Luigi Ferrucci\",\"doi\":\"10.1111/acel.70246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autophagy is intricately linked with protective cellular processes, including mitochondrial function, proteostasis, and cellular senescence. Animal studies have indicated that autophagy becomes dysfunctional with aging and may contribute to T cell immunosenescence. In humans, it remains unclear whether autophagy is impaired in CD4<sup>+</sup> T cells as people age. To answer this question, we examined basal and inducible autophagic activity in a series of experiments comparing CD4<sup>+</sup> T cells from younger (23-35 years old) and older (67-93 years old) healthy donors. We used immunofluorescence to detect LC3 (a marker of autophagosomes and autolysosomes) and LAMP2 (a marker of endolysosomes) in conjunction with bafilomycin A<sub>1</sub> (which inhibits the acidification of lysosomes) and CCCP (a mitochondrial uncoupler) to manipulate autophagic flux. We found a significantly higher autophagy flux in CD4<sup>+</sup> T cells from older compared to younger donors and a higher number of LC3<sup>+</sup> compartments among older donors. Since the overall amount of autophagosomes degraded was comparable between the two groups, we concluded that autophagosome biogenesis was reduced in the older group. Rather than a decline, our findings in healthy older donors point toward a compensatory enhancement of human CD4<sup>+</sup> T cell autophagy with age, which may be a mechanism behind healthy aging.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e70246\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.70246\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70246","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Preservation of Autophagy May Be a Mechanism Behind Healthy Aging.
Autophagy is intricately linked with protective cellular processes, including mitochondrial function, proteostasis, and cellular senescence. Animal studies have indicated that autophagy becomes dysfunctional with aging and may contribute to T cell immunosenescence. In humans, it remains unclear whether autophagy is impaired in CD4+ T cells as people age. To answer this question, we examined basal and inducible autophagic activity in a series of experiments comparing CD4+ T cells from younger (23-35 years old) and older (67-93 years old) healthy donors. We used immunofluorescence to detect LC3 (a marker of autophagosomes and autolysosomes) and LAMP2 (a marker of endolysosomes) in conjunction with bafilomycin A1 (which inhibits the acidification of lysosomes) and CCCP (a mitochondrial uncoupler) to manipulate autophagic flux. We found a significantly higher autophagy flux in CD4+ T cells from older compared to younger donors and a higher number of LC3+ compartments among older donors. Since the overall amount of autophagosomes degraded was comparable between the two groups, we concluded that autophagosome biogenesis was reduced in the older group. Rather than a decline, our findings in healthy older donors point toward a compensatory enhancement of human CD4+ T cell autophagy with age, which may be a mechanism behind healthy aging.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.