氯化物熔盐电解池的热电耦合分析与优化

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Xinwang Xie, Guochao Zhang, Guimin Lu
{"title":"氯化物熔盐电解池的热电耦合分析与优化","authors":"Xinwang Xie, Guochao Zhang, Guimin Lu","doi":"10.1002/adts.202501491","DOIUrl":null,"url":null,"abstract":"Despite the significant advantages of parallel electrodes in chloride molten salt electrolyzer, research addressing their structural design remains critically underexplored. This paper utilizes the finite element method (FEM) to develop a 3D electric‐thermal model of the electrolysis cell. Multiphysics coupling simulations are employed to investigate the distribution of the electric and thermal fields within a lithium electrolysis cell featuring 50 kA flat electrodes. Based on the thermal balance of the electrolyzer, the study measures the impact of various structural parameters on current intensity and resistance voltage in different regions. Factorial analysis is used to determine the optimization direction for each structural parameter. Ultimately, an effect equation describing the influence of each structural parameter on the thermal equilibrium of the electrolyzer is derived. Furthermore, this study employs the Central Composite Design (CCD) within the Response Surface Methodology (RSM) framework to investigate the influence of structural parameters on the thermal equilibrium of the electrolyzer. The results validate the accuracy of the derived equations and demonstrate their applicability in optimizing the electrolyzer model. By integrating multi‐physics coupling analysis with CCD‐based parametric optimization, this work provides a robust methodology for enhancing operational efficiency and reducing energy consumption in industrial‐scale lithium electrolysis processes.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"40 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electro‐Thermal Coupling Analysis and Optimization of Chloride Molten Salt Electrolysis Cells\",\"authors\":\"Xinwang Xie, Guochao Zhang, Guimin Lu\",\"doi\":\"10.1002/adts.202501491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the significant advantages of parallel electrodes in chloride molten salt electrolyzer, research addressing their structural design remains critically underexplored. This paper utilizes the finite element method (FEM) to develop a 3D electric‐thermal model of the electrolysis cell. Multiphysics coupling simulations are employed to investigate the distribution of the electric and thermal fields within a lithium electrolysis cell featuring 50 kA flat electrodes. Based on the thermal balance of the electrolyzer, the study measures the impact of various structural parameters on current intensity and resistance voltage in different regions. Factorial analysis is used to determine the optimization direction for each structural parameter. Ultimately, an effect equation describing the influence of each structural parameter on the thermal equilibrium of the electrolyzer is derived. Furthermore, this study employs the Central Composite Design (CCD) within the Response Surface Methodology (RSM) framework to investigate the influence of structural parameters on the thermal equilibrium of the electrolyzer. The results validate the accuracy of the derived equations and demonstrate their applicability in optimizing the electrolyzer model. By integrating multi‐physics coupling analysis with CCD‐based parametric optimization, this work provides a robust methodology for enhancing operational efficiency and reducing energy consumption in industrial‐scale lithium electrolysis processes.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202501491\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202501491","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

尽管平行电极在氯化物熔盐电解槽中具有显著的优势,但对其结构设计的研究仍然严重不足。本文利用有限元方法建立了电解槽的三维电热模型。采用多物理场耦合模拟研究了50 kA平板电极锂电解池内电场和热场的分布。本研究以电解槽热平衡为基础,测量了不同结构参数对电解槽不同区域电流强度和电阻电压的影响。利用析因分析法确定各结构参数的优化方向。最后,导出了电解槽各结构参数对电解槽热平衡影响的效应方程。此外,本研究采用响应面法(RSM)框架下的中心复合设计(CCD)来研究结构参数对电解槽热平衡的影响。结果验证了推导方程的准确性,并证明了其在电解槽模型优化中的适用性。通过将多物理场耦合分析与基于CCD的参数优化相结合,本研究为提高工业规模锂电解过程的操作效率和降低能耗提供了一种强大的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electro‐Thermal Coupling Analysis and Optimization of Chloride Molten Salt Electrolysis Cells
Despite the significant advantages of parallel electrodes in chloride molten salt electrolyzer, research addressing their structural design remains critically underexplored. This paper utilizes the finite element method (FEM) to develop a 3D electric‐thermal model of the electrolysis cell. Multiphysics coupling simulations are employed to investigate the distribution of the electric and thermal fields within a lithium electrolysis cell featuring 50 kA flat electrodes. Based on the thermal balance of the electrolyzer, the study measures the impact of various structural parameters on current intensity and resistance voltage in different regions. Factorial analysis is used to determine the optimization direction for each structural parameter. Ultimately, an effect equation describing the influence of each structural parameter on the thermal equilibrium of the electrolyzer is derived. Furthermore, this study employs the Central Composite Design (CCD) within the Response Surface Methodology (RSM) framework to investigate the influence of structural parameters on the thermal equilibrium of the electrolyzer. The results validate the accuracy of the derived equations and demonstrate their applicability in optimizing the electrolyzer model. By integrating multi‐physics coupling analysis with CCD‐based parametric optimization, this work provides a robust methodology for enhancing operational efficiency and reducing energy consumption in industrial‐scale lithium electrolysis processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信