{"title":"一个大小不适合所有:fgfr4驱动的癌症的精确组合。","authors":"Emmy D G Fleuren","doi":"10.31083/FBL43996","DOIUrl":null,"url":null,"abstract":"<p><p>Oncogenic FGFR4 signalling represents an attractive therapeutic target across multiple cancers, yet treatment resistance almost uniformly occurs. A critical mechanism steering resistance is a rapid and complex reprogramming of kinase signalling networks, called the adaptive bypass response. Capturing this dynamic rewiring to pinpoint, on a molecular level, the right combinatorial drug for the right FGFR4-driven cancer patient at the right time, will be key to achieving sustained tumour responses. But how can one accurately capture this process across different cancer types exhibiting contrasting levels of FGFR4 signalling pathway components and network behaviours? A recent study by Shin <i>et al</i>. delivers a technically elegant and biologically grounded exploration of the adaptive signalling landscape to tackle this, revealing cell context-dependent combinatorial strategies.</p>","PeriodicalId":73069,"journal":{"name":"Frontiers in bioscience (Landmark edition)","volume":"30 9","pages":"43996"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One Size Does Not Fit All: Precision Combinations for FGFR4-driven Cancers.\",\"authors\":\"Emmy D G Fleuren\",\"doi\":\"10.31083/FBL43996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oncogenic FGFR4 signalling represents an attractive therapeutic target across multiple cancers, yet treatment resistance almost uniformly occurs. A critical mechanism steering resistance is a rapid and complex reprogramming of kinase signalling networks, called the adaptive bypass response. Capturing this dynamic rewiring to pinpoint, on a molecular level, the right combinatorial drug for the right FGFR4-driven cancer patient at the right time, will be key to achieving sustained tumour responses. But how can one accurately capture this process across different cancer types exhibiting contrasting levels of FGFR4 signalling pathway components and network behaviours? A recent study by Shin <i>et al</i>. delivers a technically elegant and biologically grounded exploration of the adaptive signalling landscape to tackle this, revealing cell context-dependent combinatorial strategies.</p>\",\"PeriodicalId\":73069,\"journal\":{\"name\":\"Frontiers in bioscience (Landmark edition)\",\"volume\":\"30 9\",\"pages\":\"43996\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioscience (Landmark edition)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31083/FBL43996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Landmark edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/FBL43996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
One Size Does Not Fit All: Precision Combinations for FGFR4-driven Cancers.
Oncogenic FGFR4 signalling represents an attractive therapeutic target across multiple cancers, yet treatment resistance almost uniformly occurs. A critical mechanism steering resistance is a rapid and complex reprogramming of kinase signalling networks, called the adaptive bypass response. Capturing this dynamic rewiring to pinpoint, on a molecular level, the right combinatorial drug for the right FGFR4-driven cancer patient at the right time, will be key to achieving sustained tumour responses. But how can one accurately capture this process across different cancer types exhibiting contrasting levels of FGFR4 signalling pathway components and network behaviours? A recent study by Shin et al. delivers a technically elegant and biologically grounded exploration of the adaptive signalling landscape to tackle this, revealing cell context-dependent combinatorial strategies.