脂肪细胞硫酸肝素通过fgf1介导的葡萄糖调节决定小鼠2型糖尿病的易感性。

IF 6.6 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Chung-Jui Yu, Ariane R Pessentheiner, Sihao Liu, Sarah Wax, Marissa L Maciej-Hulme, Chelsea D Painter, Bastian Ramms, Daniel R Sandoval, Anthony Quach, Natalie DeForest, G Michelle Ducasa, Chiara Tognaccini, Caroline Labib, Norah Al-Azzam, Friederike Haumann, Greg Trieger, Patrick Secrest, Amit Majithia, Aaron C Petrey, Kamil Godula, Annette R Atkins, Michael Downes, Ronald M Evans, Philip L S M Gordts
{"title":"脂肪细胞硫酸肝素通过fgf1介导的葡萄糖调节决定小鼠2型糖尿病的易感性。","authors":"Chung-Jui Yu, Ariane R Pessentheiner, Sihao Liu, Sarah Wax, Marissa L Maciej-Hulme, Chelsea D Painter, Bastian Ramms, Daniel R Sandoval, Anthony Quach, Natalie DeForest, G Michelle Ducasa, Chiara Tognaccini, Caroline Labib, Norah Al-Azzam, Friederike Haumann, Greg Trieger, Patrick Secrest, Amit Majithia, Aaron C Petrey, Kamil Godula, Annette R Atkins, Michael Downes, Ronald M Evans, Philip L S M Gordts","doi":"10.1016/j.molmet.2025.102267","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is the principal driver of insulin resistance, and lipodystrophy is also linked with insulin resistance, emphasizing the vital role of adipose tissue in glucose homeostasis. The quality of adipose tissue expansion is a critical determinant of insulin resistance predisposition, with individuals suffering from metabolic unhealthy adipose expansion exhibiting greater risk. Adipocytes are pivotal in orchestrating metabolic adjustments in response to nutrient intake and cell intrinsic factors that positively regulate these adjustments are key to prevent Type-2 diabetes. Employing unique genetic mouse models, we established the critical involvement of heparan sulfate (HS), a fundamental element of the adipocyte glycocalyx, in upholding glucose homeostasis during dietary stress. Genetic models that compromise adipocyte HS accelerate the development of high-fat diet-induced hyperglycemia and insulin resistance, independent of weight gain. Mechanistically, we show that perturbations in adipocyte HS disrupts endogenous FGF1 signaling, a key nutrient-sensitive effector. Furthermore, compromising adipocyte HS composition detrimentally impacts FGF1-FGFR1-mediated endocrinization, with no significant improvement observed in glucose homeostasis. Our data establish adipocyte HS composition as a determinant of Type 2 diabetes susceptibility and the critical dependency of the endogenous adipocyte FGF1 metabolic pathway on HS.</p>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":" ","pages":"102267"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adipocyte Heparan Sulfate Determines Type 2 Diabetes Susceptibility in Mice via FGF1-Mediated Glucose Regulation.\",\"authors\":\"Chung-Jui Yu, Ariane R Pessentheiner, Sihao Liu, Sarah Wax, Marissa L Maciej-Hulme, Chelsea D Painter, Bastian Ramms, Daniel R Sandoval, Anthony Quach, Natalie DeForest, G Michelle Ducasa, Chiara Tognaccini, Caroline Labib, Norah Al-Azzam, Friederike Haumann, Greg Trieger, Patrick Secrest, Amit Majithia, Aaron C Petrey, Kamil Godula, Annette R Atkins, Michael Downes, Ronald M Evans, Philip L S M Gordts\",\"doi\":\"10.1016/j.molmet.2025.102267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Obesity is the principal driver of insulin resistance, and lipodystrophy is also linked with insulin resistance, emphasizing the vital role of adipose tissue in glucose homeostasis. The quality of adipose tissue expansion is a critical determinant of insulin resistance predisposition, with individuals suffering from metabolic unhealthy adipose expansion exhibiting greater risk. Adipocytes are pivotal in orchestrating metabolic adjustments in response to nutrient intake and cell intrinsic factors that positively regulate these adjustments are key to prevent Type-2 diabetes. Employing unique genetic mouse models, we established the critical involvement of heparan sulfate (HS), a fundamental element of the adipocyte glycocalyx, in upholding glucose homeostasis during dietary stress. Genetic models that compromise adipocyte HS accelerate the development of high-fat diet-induced hyperglycemia and insulin resistance, independent of weight gain. Mechanistically, we show that perturbations in adipocyte HS disrupts endogenous FGF1 signaling, a key nutrient-sensitive effector. Furthermore, compromising adipocyte HS composition detrimentally impacts FGF1-FGFR1-mediated endocrinization, with no significant improvement observed in glucose homeostasis. Our data establish adipocyte HS composition as a determinant of Type 2 diabetes susceptibility and the critical dependency of the endogenous adipocyte FGF1 metabolic pathway on HS.</p>\",\"PeriodicalId\":18765,\"journal\":{\"name\":\"Molecular Metabolism\",\"volume\":\" \",\"pages\":\"102267\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molmet.2025.102267\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molmet.2025.102267","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

肥胖是胰岛素抵抗的主要驱动因素,脂肪营养不良也与胰岛素抵抗有关,强调脂肪组织在葡萄糖稳态中的重要作用。脂肪组织扩张的质量是胰岛素抵抗易感性的关键决定因素,患有代谢不健康脂肪扩张的个体表现出更大的风险。脂肪细胞是协调代谢调节以响应营养摄入的关键,细胞内在因子积极调节这些调节是预防2型糖尿病的关键。采用独特的遗传小鼠模型,我们建立了硫酸肝素(HS)的关键参与,脂肪细胞糖萼的基本元素,在饮食应激期间维持葡萄糖稳态。损害脂肪细胞HS的遗传模型加速了高脂肪饮食诱导的高血糖和胰岛素抵抗的发展,与体重增加无关。在机制上,我们发现脂肪细胞HS的扰动会破坏内源性FGF1信号,这是一种关键的营养敏感效应物。此外,脂肪细胞HS组成的降低会对fgf1 - fgfr1介导的内分泌产生不利影响,葡萄糖稳态没有明显改善。我们的数据证实了脂肪细胞HS组成是2型糖尿病易感性的决定因素,以及内源性脂肪细胞FGF1代谢途径对HS的关键依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adipocyte Heparan Sulfate Determines Type 2 Diabetes Susceptibility in Mice via FGF1-Mediated Glucose Regulation.

Obesity is the principal driver of insulin resistance, and lipodystrophy is also linked with insulin resistance, emphasizing the vital role of adipose tissue in glucose homeostasis. The quality of adipose tissue expansion is a critical determinant of insulin resistance predisposition, with individuals suffering from metabolic unhealthy adipose expansion exhibiting greater risk. Adipocytes are pivotal in orchestrating metabolic adjustments in response to nutrient intake and cell intrinsic factors that positively regulate these adjustments are key to prevent Type-2 diabetes. Employing unique genetic mouse models, we established the critical involvement of heparan sulfate (HS), a fundamental element of the adipocyte glycocalyx, in upholding glucose homeostasis during dietary stress. Genetic models that compromise adipocyte HS accelerate the development of high-fat diet-induced hyperglycemia and insulin resistance, independent of weight gain. Mechanistically, we show that perturbations in adipocyte HS disrupts endogenous FGF1 signaling, a key nutrient-sensitive effector. Furthermore, compromising adipocyte HS composition detrimentally impacts FGF1-FGFR1-mediated endocrinization, with no significant improvement observed in glucose homeostasis. Our data establish adipocyte HS composition as a determinant of Type 2 diabetes susceptibility and the critical dependency of the endogenous adipocyte FGF1 metabolic pathway on HS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Metabolism
Molecular Metabolism ENDOCRINOLOGY & METABOLISM-
CiteScore
14.50
自引率
2.50%
发文量
219
审稿时长
43 days
期刊介绍: Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction. We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信