时间和蛋白质特异性s -棕榈酰化支持突触和神经网络的可塑性。

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Agata Pytyś, Rabia Ijaz, Anna Buszka, Jacek Miłek, Izabela Figiel, Patrycja Wardaszka-Pianka, Matylda Roszkowska, Natalia Mierzwa, Adam Wojtas, Eli Kerstein, Remigiusz Serwa, Katarzyna Kalita, Rhonda Dzakpasu, Magdalena Dziembowska, Jakub Włodarczyk, Tomasz Wójtowicz
{"title":"时间和蛋白质特异性s -棕榈酰化支持突触和神经网络的可塑性。","authors":"Agata Pytyś, Rabia Ijaz, Anna Buszka, Jacek Miłek, Izabela Figiel, Patrycja Wardaszka-Pianka, Matylda Roszkowska, Natalia Mierzwa, Adam Wojtas, Eli Kerstein, Remigiusz Serwa, Katarzyna Kalita, Rhonda Dzakpasu, Magdalena Dziembowska, Jakub Włodarczyk, Tomasz Wójtowicz","doi":"10.1007/s00018-025-05893-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Synaptic plasticity, a fundamental process underlying learning and memory, depends on activity-driven changes in neural connectivity. S-palmitoylation, a reversible post-translational lipid modification, modulates synaptic protein function by influencing protein conformation, localization, trafficking, and molecular interactions. Despite its known significance in neuronal function, the temporal and protein-specific dynamics of S-palmitoylation during synaptic plasticity remain poorly understood.</p><p><strong>Methodology & principal findings: </strong>Using electrophysiological methods, molecular biology, proteomics, and imaging across various models (neuronal cultures, hippocampal slices, and synaptoneurosomes), we investigated S-palmitoylation during synaptic activity. Induction of long-term potentiation (LTP) resulted in protein-specific palmitoylation changes without altering global levels. In hippocampal slices, synaptophysin and PSD95 displayed distinct temporal patterns of palmitoylation, influenced by LTP. Deacylation experiments using N-(tert-butyl)hydroxylamine (NtBuHA) demonstrated that protein S-palmitoylation is crucial for organizing neuronal spiking and enabling LTP, particularly in the stratum radiatum. Mass spectrometry of synaptoneurosomes revealed a palmitoylome including over 700 proteins, with stimulation-induced predominant depalmitoylation. Differentially palmitoylated proteins were associated with synaptic vesicle cycling, cytoskeletal dynamics, and neurotransmitter release. What is interesting is that synaptoneurosomes contained active palmitoylation machinery, supporting rapid, target-specific responses to NMDA receptor activation.</p><p><strong>Conclusions: </strong>Temporal and protein-specific S-palmitoylation emerges as a vital mechanism for synaptic plasticity, contributing to neuronal network function and memory formation. These findings elucidate how palmitoylation acts as a dynamic regulator of synaptic activity and offer insights into its regulation. The study highlights the potential of targeting palmitoylation pathways for enhancing neuronal function.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"355"},"PeriodicalIF":6.2000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12515174/pdf/","citationCount":"0","resultStr":"{\"title\":\"Temporal and protein-specific S-palmitoylation supports synaptic and neural network plasticity.\",\"authors\":\"Agata Pytyś, Rabia Ijaz, Anna Buszka, Jacek Miłek, Izabela Figiel, Patrycja Wardaszka-Pianka, Matylda Roszkowska, Natalia Mierzwa, Adam Wojtas, Eli Kerstein, Remigiusz Serwa, Katarzyna Kalita, Rhonda Dzakpasu, Magdalena Dziembowska, Jakub Włodarczyk, Tomasz Wójtowicz\",\"doi\":\"10.1007/s00018-025-05893-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Synaptic plasticity, a fundamental process underlying learning and memory, depends on activity-driven changes in neural connectivity. S-palmitoylation, a reversible post-translational lipid modification, modulates synaptic protein function by influencing protein conformation, localization, trafficking, and molecular interactions. Despite its known significance in neuronal function, the temporal and protein-specific dynamics of S-palmitoylation during synaptic plasticity remain poorly understood.</p><p><strong>Methodology & principal findings: </strong>Using electrophysiological methods, molecular biology, proteomics, and imaging across various models (neuronal cultures, hippocampal slices, and synaptoneurosomes), we investigated S-palmitoylation during synaptic activity. Induction of long-term potentiation (LTP) resulted in protein-specific palmitoylation changes without altering global levels. In hippocampal slices, synaptophysin and PSD95 displayed distinct temporal patterns of palmitoylation, influenced by LTP. Deacylation experiments using N-(tert-butyl)hydroxylamine (NtBuHA) demonstrated that protein S-palmitoylation is crucial for organizing neuronal spiking and enabling LTP, particularly in the stratum radiatum. Mass spectrometry of synaptoneurosomes revealed a palmitoylome including over 700 proteins, with stimulation-induced predominant depalmitoylation. Differentially palmitoylated proteins were associated with synaptic vesicle cycling, cytoskeletal dynamics, and neurotransmitter release. What is interesting is that synaptoneurosomes contained active palmitoylation machinery, supporting rapid, target-specific responses to NMDA receptor activation.</p><p><strong>Conclusions: </strong>Temporal and protein-specific S-palmitoylation emerges as a vital mechanism for synaptic plasticity, contributing to neuronal network function and memory formation. These findings elucidate how palmitoylation acts as a dynamic regulator of synaptic activity and offer insights into its regulation. The study highlights the potential of targeting palmitoylation pathways for enhancing neuronal function.</p>\",\"PeriodicalId\":10007,\"journal\":{\"name\":\"Cellular and Molecular Life Sciences\",\"volume\":\"82 1\",\"pages\":\"355\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12515174/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00018-025-05893-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05893-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:突触可塑性是学习和记忆的基本过程,它依赖于活动驱动的神经连接变化。s -棕榈酰化是一种可逆的翻译后脂质修饰,通过影响蛋白质构象、定位、运输和分子相互作用来调节突触蛋白的功能。尽管已知s -棕榈酰化在神经元功能中的重要性,但在突触可塑性过程中s -棕榈酰化的时间和蛋白质特异性动力学仍然知之甚少。方法和主要发现:利用电生理学方法、分子生物学、蛋白质组学和各种模型(神经元培养、海马切片和突触eurosome)的成像,我们研究了突触活动期间的s -棕榈酰化。长期增强(LTP)的诱导导致蛋白特异性棕榈酰化的改变而不改变全局水平。在海马切片中,突触素和PSD95表现出不同的棕榈酰化时间模式,受LTP的影响。利用N-(叔丁基)羟胺(NtBuHA)进行的去酰化实验表明,蛋白质s -棕榈酰化对于组织神经元峰化和LTP的实现至关重要,特别是在辐射层中。质谱分析显示突触质粒含有超过700种蛋白,以刺激诱导的去棕榈酰化为主。不同棕榈酰化蛋白与突触囊泡循环、细胞骨架动力学和神经递质释放有关。有趣的是,突触体含有活跃的棕榈酰化机制,支持对NMDA受体激活的快速,目标特异性反应。结论:时间和蛋白质特异性s -棕榈酰化是突触可塑性的重要机制,有助于神经元网络功能和记忆形成。这些发现阐明了棕榈酰化如何作为突触活动的动态调节器,并提供了对其调节的见解。该研究强调了靶向棕榈酰化途径增强神经元功能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal and protein-specific S-palmitoylation supports synaptic and neural network plasticity.

Background: Synaptic plasticity, a fundamental process underlying learning and memory, depends on activity-driven changes in neural connectivity. S-palmitoylation, a reversible post-translational lipid modification, modulates synaptic protein function by influencing protein conformation, localization, trafficking, and molecular interactions. Despite its known significance in neuronal function, the temporal and protein-specific dynamics of S-palmitoylation during synaptic plasticity remain poorly understood.

Methodology & principal findings: Using electrophysiological methods, molecular biology, proteomics, and imaging across various models (neuronal cultures, hippocampal slices, and synaptoneurosomes), we investigated S-palmitoylation during synaptic activity. Induction of long-term potentiation (LTP) resulted in protein-specific palmitoylation changes without altering global levels. In hippocampal slices, synaptophysin and PSD95 displayed distinct temporal patterns of palmitoylation, influenced by LTP. Deacylation experiments using N-(tert-butyl)hydroxylamine (NtBuHA) demonstrated that protein S-palmitoylation is crucial for organizing neuronal spiking and enabling LTP, particularly in the stratum radiatum. Mass spectrometry of synaptoneurosomes revealed a palmitoylome including over 700 proteins, with stimulation-induced predominant depalmitoylation. Differentially palmitoylated proteins were associated with synaptic vesicle cycling, cytoskeletal dynamics, and neurotransmitter release. What is interesting is that synaptoneurosomes contained active palmitoylation machinery, supporting rapid, target-specific responses to NMDA receptor activation.

Conclusions: Temporal and protein-specific S-palmitoylation emerges as a vital mechanism for synaptic plasticity, contributing to neuronal network function and memory formation. These findings elucidate how palmitoylation acts as a dynamic regulator of synaptic activity and offer insights into its regulation. The study highlights the potential of targeting palmitoylation pathways for enhancing neuronal function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences 生物-生化与分子生物学
CiteScore
13.20
自引率
1.20%
发文量
546
审稿时长
1.0 months
期刊介绍: Journal Name: Cellular and Molecular Life Sciences (CMLS) Location: Basel, Switzerland Focus: Multidisciplinary journal Publishes research articles, reviews, multi-author reviews, and visions & reflections articles Coverage: Latest aspects of biological and biomedical research Areas include: Biochemistry and molecular biology Cell biology Molecular and cellular aspects of biomedicine Neuroscience Pharmacology Immunology Additional Features: Welcomes comments on any article published in CMLS Accepts suggestions for topics to be covered
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信