非平衡声子激发调制的热电子动力学

IF 2.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Jiaxuan Xu, Weikang Li, Hua Bao
{"title":"非平衡声子激发调制的热电子动力学","authors":"Jiaxuan Xu,&nbsp;Weikang Li,&nbsp;Hua Bao","doi":"10.1002/andp.202500126","DOIUrl":null,"url":null,"abstract":"<p>With advances in device miniaturization, understanding and manipulating nanoscale hot electron dynamics in semiconductors is recognized as an essential factor for improving performance and energy efficiency in optoelectronics and logic devices in the post-Moore era. This work demonstrates an effective strategy to modulate hot electron dynamics through nonequilibrium phonon excitations, utilizing first-principles-based mode-resolved electron-phonon coupled Boltzmann transport equation calculations. Two different phonon-mediated pathways for perturbing hot electron relaxation dynamics in doped semiconductors are illustrated, i.e., high-frequency optical phonons (e.g., longitudinal optical phonons in GaN) and low-frequency acoustic phonons, both of which exhibit strong coupling with electrons. While exciting high-frequency optical phonons to significant nonequilibrium states can quickly reheat and elevate electron temperatures, their rapid energy decay to other phonons fails to continuously slow down the subsequent hot electron relaxation. In contrast, the weak coupling of low-frequency acoustic phonons with other phonons facilitates the excitation of long-lived phonon nonequilibrium, which effectively prolongs the hot electron relaxation process from a few to tens of picoseconds for GaN, AlN, and Si. These findings reveal a general mechanism to modulate hot electron dynamics in device semiconductors, offering promising approaches to enhance the energy efficiency of advanced nanoscale devices.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 10","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hot Electron Dynamics Modulated by Nonequilibrium Phonon Excitations\",\"authors\":\"Jiaxuan Xu,&nbsp;Weikang Li,&nbsp;Hua Bao\",\"doi\":\"10.1002/andp.202500126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With advances in device miniaturization, understanding and manipulating nanoscale hot electron dynamics in semiconductors is recognized as an essential factor for improving performance and energy efficiency in optoelectronics and logic devices in the post-Moore era. This work demonstrates an effective strategy to modulate hot electron dynamics through nonequilibrium phonon excitations, utilizing first-principles-based mode-resolved electron-phonon coupled Boltzmann transport equation calculations. Two different phonon-mediated pathways for perturbing hot electron relaxation dynamics in doped semiconductors are illustrated, i.e., high-frequency optical phonons (e.g., longitudinal optical phonons in GaN) and low-frequency acoustic phonons, both of which exhibit strong coupling with electrons. While exciting high-frequency optical phonons to significant nonequilibrium states can quickly reheat and elevate electron temperatures, their rapid energy decay to other phonons fails to continuously slow down the subsequent hot electron relaxation. In contrast, the weak coupling of low-frequency acoustic phonons with other phonons facilitates the excitation of long-lived phonon nonequilibrium, which effectively prolongs the hot electron relaxation process from a few to tens of picoseconds for GaN, AlN, and Si. These findings reveal a general mechanism to modulate hot electron dynamics in device semiconductors, offering promising approaches to enhance the energy efficiency of advanced nanoscale devices.</p>\",\"PeriodicalId\":7896,\"journal\":{\"name\":\"Annalen der Physik\",\"volume\":\"537 10\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annalen der Physik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/andp.202500126\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202500126","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着器件小型化的进步,理解和操纵半导体中的纳米级热电子动力学被认为是在后摩尔时代提高光电子和逻辑器件性能和能效的重要因素。这项工作展示了一种有效的策略,通过非平衡声子激发来调制热电子动力学,利用基于第一原理的模式分辨电子-声子耦合玻尔兹曼输运方程计算。说明了掺杂半导体中干扰热电子弛豫动力学的两种不同声子介导途径,即高频光学声子(例如氮化镓中的纵向光学声子)和低频声学声子,两者都表现出与电子的强耦合。虽然将高频光学声子激发到显著的非平衡态可以快速地再加热和提高电子温度,但它们对其他声子的快速能量衰减不能持续地减缓随后的热电子弛豫。相反,低频声子与其他声子的弱耦合促进了长寿命声子的非平衡激发,有效地延长了GaN、AlN和Si的热电子弛豫过程,从几皮秒延长到几十皮秒。这些发现揭示了器件半导体中调节热电子动力学的一般机制,为提高先进纳米级器件的能量效率提供了有希望的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hot Electron Dynamics Modulated by Nonequilibrium Phonon Excitations

Hot Electron Dynamics Modulated by Nonequilibrium Phonon Excitations

With advances in device miniaturization, understanding and manipulating nanoscale hot electron dynamics in semiconductors is recognized as an essential factor for improving performance and energy efficiency in optoelectronics and logic devices in the post-Moore era. This work demonstrates an effective strategy to modulate hot electron dynamics through nonequilibrium phonon excitations, utilizing first-principles-based mode-resolved electron-phonon coupled Boltzmann transport equation calculations. Two different phonon-mediated pathways for perturbing hot electron relaxation dynamics in doped semiconductors are illustrated, i.e., high-frequency optical phonons (e.g., longitudinal optical phonons in GaN) and low-frequency acoustic phonons, both of which exhibit strong coupling with electrons. While exciting high-frequency optical phonons to significant nonequilibrium states can quickly reheat and elevate electron temperatures, their rapid energy decay to other phonons fails to continuously slow down the subsequent hot electron relaxation. In contrast, the weak coupling of low-frequency acoustic phonons with other phonons facilitates the excitation of long-lived phonon nonequilibrium, which effectively prolongs the hot electron relaxation process from a few to tens of picoseconds for GaN, AlN, and Si. These findings reveal a general mechanism to modulate hot electron dynamics in device semiconductors, offering promising approaches to enhance the energy efficiency of advanced nanoscale devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annalen der Physik
Annalen der Physik 物理-物理:综合
CiteScore
4.50
自引率
8.30%
发文量
202
审稿时长
3 months
期刊介绍: Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信