联邦边缘智能:移动平台上多目标检测的协作学习框架

IF 0.5 Q4 TELECOMMUNICATIONS
Miao Yan
{"title":"联邦边缘智能:移动平台上多目标检测的协作学习框架","authors":"Miao Yan","doi":"10.1002/itl2.70145","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Real-time multi-object detection on smartphones requires a careful balance of accuracy, latency, energy efficiency, and data privacy. We introduce <i>FedEdgeDetect</i>, a unified framework that combines federated learning with edge-assisted inference to address these challenges holistically. The system incorporates a hardware-aware YOLOv5s variant with lightweight attention modules for efficient on-device execution. A capability-clustered federated training protocol is designed to ensure privacy through differential noise injection and secure aggregation, while reducing communication overhead. At inference time, a dynamic controller adaptively partitions computation between the device and edge, optimizing for real-time performance and energy consumption. Experiments across diverse datasets and devices demonstrate that FedEdgeDetect consistently improves detection accuracy, accelerates inference, enhances energy efficiency, and enforces strong privacy guarantees, outperforming existing mobile detection baselines.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 6","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated Edge Intelligence: A Collaborative Learning Framework for Multi-Object Detection on Mobile Platforms\",\"authors\":\"Miao Yan\",\"doi\":\"10.1002/itl2.70145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Real-time multi-object detection on smartphones requires a careful balance of accuracy, latency, energy efficiency, and data privacy. We introduce <i>FedEdgeDetect</i>, a unified framework that combines federated learning with edge-assisted inference to address these challenges holistically. The system incorporates a hardware-aware YOLOv5s variant with lightweight attention modules for efficient on-device execution. A capability-clustered federated training protocol is designed to ensure privacy through differential noise injection and secure aggregation, while reducing communication overhead. At inference time, a dynamic controller adaptively partitions computation between the device and edge, optimizing for real-time performance and energy consumption. Experiments across diverse datasets and devices demonstrate that FedEdgeDetect consistently improves detection accuracy, accelerates inference, enhances energy efficiency, and enforces strong privacy guarantees, outperforming existing mobile detection baselines.</p>\\n </div>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 6\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

智能手机上的实时多目标检测需要仔细平衡准确性、延迟、能效和数据隐私。我们引入了FedEdgeDetect,这是一个统一的框架,将联邦学习与边缘辅助推理相结合,以全面解决这些挑战。该系统集成了一个硬件感知的YOLOv5s变体和轻量级关注模块,用于高效的设备上执行。设计了一种功能集群联合训练协议,通过差分噪声注入和安全聚合来确保隐私,同时减少通信开销。在推理时,动态控制器自适应地在设备和边缘之间划分计算,优化实时性能和能耗。在不同数据集和设备上进行的实验表明,FedEdgeDetect持续提高检测准确性,加速推理,提高能源效率,并加强隐私保障,优于现有的移动检测基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Federated Edge Intelligence: A Collaborative Learning Framework for Multi-Object Detection on Mobile Platforms

Federated Edge Intelligence: A Collaborative Learning Framework for Multi-Object Detection on Mobile Platforms

Real-time multi-object detection on smartphones requires a careful balance of accuracy, latency, energy efficiency, and data privacy. We introduce FedEdgeDetect, a unified framework that combines federated learning with edge-assisted inference to address these challenges holistically. The system incorporates a hardware-aware YOLOv5s variant with lightweight attention modules for efficient on-device execution. A capability-clustered federated training protocol is designed to ensure privacy through differential noise injection and secure aggregation, while reducing communication overhead. At inference time, a dynamic controller adaptively partitions computation between the device and edge, optimizing for real-time performance and energy consumption. Experiments across diverse datasets and devices demonstrate that FedEdgeDetect consistently improves detection accuracy, accelerates inference, enhances energy efficiency, and enforces strong privacy guarantees, outperforming existing mobile detection baselines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信