三维高斯溅射技术及其扩展:综述

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Fengkai Luan , Siliang Sun , Hu Zhang, Yong Yin, Ke Wang, Jiaxing Yang
{"title":"三维高斯溅射技术及其扩展:综述","authors":"Fengkai Luan ,&nbsp;Siliang Sun ,&nbsp;Hu Zhang,&nbsp;Yong Yin,&nbsp;Ke Wang,&nbsp;Jiaxing Yang","doi":"10.1016/j.neucom.2025.131629","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, 3D Gaussian Splatting (3DGS) has achieved remarkable progress in the field of novel view synthesis. Unlike implicit neural radiance field (NeRF) methods that primarily focus on positional and viewpoint transformations, 3DGS leverages millions of Gaussian ellipsoids for scene reconstruction and employs parallel differentiable rasterization to substantially improve rendering efficiency. Given the rapid advancement and promising prospects of this technique, this survey presents a systematic overview of recent developments in 3DGS. We provide a detailed exposition of the fundamental theory underlying 3DGS, along with relevant benchmark datasets. Uniquely, this work organizes existing optimization strategies according to the stages of the Gaussian splatting pipeline. In addition, we review various downstream applications based on 3DGS and discuss prospective research directions. This survey aims to serve as a valuable reference for researchers across all stages of engagement and to foster further advancements in 3DGS.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"658 ","pages":"Article 131629"},"PeriodicalIF":6.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Gaussian splatting technologies and extensions: A review\",\"authors\":\"Fengkai Luan ,&nbsp;Siliang Sun ,&nbsp;Hu Zhang,&nbsp;Yong Yin,&nbsp;Ke Wang,&nbsp;Jiaxing Yang\",\"doi\":\"10.1016/j.neucom.2025.131629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, 3D Gaussian Splatting (3DGS) has achieved remarkable progress in the field of novel view synthesis. Unlike implicit neural radiance field (NeRF) methods that primarily focus on positional and viewpoint transformations, 3DGS leverages millions of Gaussian ellipsoids for scene reconstruction and employs parallel differentiable rasterization to substantially improve rendering efficiency. Given the rapid advancement and promising prospects of this technique, this survey presents a systematic overview of recent developments in 3DGS. We provide a detailed exposition of the fundamental theory underlying 3DGS, along with relevant benchmark datasets. Uniquely, this work organizes existing optimization strategies according to the stages of the Gaussian splatting pipeline. In addition, we review various downstream applications based on 3DGS and discuss prospective research directions. This survey aims to serve as a valuable reference for researchers across all stages of engagement and to foster further advancements in 3DGS.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"658 \",\"pages\":\"Article 131629\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092523122502301X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092523122502301X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,三维高斯溅射(3DGS)技术在新视图合成领域取得了显著进展。与隐式神经辐射场(NeRF)方法主要关注位置和视点转换不同,3DGS利用数百万高斯椭球进行场景重建,并采用并行可微光栅化来大幅提高渲染效率。鉴于该技术的快速发展和广阔的前景,本调查对3DGS的最新发展进行了系统的概述。我们提供了3DGS基础理论的详细阐述,以及相关的基准数据集。独特的是,这项工作根据高斯溅射管道的阶段组织现有的优化策略。此外,我们回顾了基于3DGS的各种下游应用,并讨论了未来的研究方向。这项调查旨在为研究人员提供有价值的参考,并促进3DGS的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Gaussian splatting technologies and extensions: A review
In recent years, 3D Gaussian Splatting (3DGS) has achieved remarkable progress in the field of novel view synthesis. Unlike implicit neural radiance field (NeRF) methods that primarily focus on positional and viewpoint transformations, 3DGS leverages millions of Gaussian ellipsoids for scene reconstruction and employs parallel differentiable rasterization to substantially improve rendering efficiency. Given the rapid advancement and promising prospects of this technique, this survey presents a systematic overview of recent developments in 3DGS. We provide a detailed exposition of the fundamental theory underlying 3DGS, along with relevant benchmark datasets. Uniquely, this work organizes existing optimization strategies according to the stages of the Gaussian splatting pipeline. In addition, we review various downstream applications based on 3DGS and discuss prospective research directions. This survey aims to serve as a valuable reference for researchers across all stages of engagement and to foster further advancements in 3DGS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信