HP2:用于CNN压缩的混合和精确制导滤波器剪枝

IF 6.8 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zhichao Zhao , Shangwei Guo , Jialing He , Yafei Li , Run Wang , Tao Xiang
{"title":"HP2:用于CNN压缩的混合和精确制导滤波器剪枝","authors":"Zhichao Zhao ,&nbsp;Shangwei Guo ,&nbsp;Jialing He ,&nbsp;Yafei Li ,&nbsp;Run Wang ,&nbsp;Tao Xiang","doi":"10.1016/j.ins.2025.122741","DOIUrl":null,"url":null,"abstract":"<div><div>Filter pruning has emerged as a promising approach for compressing Convolutional Neural Network (CNN) models. However, existing methods often lack accuracy in evaluating filter importance and precision in on-demand filter pruning. In this paper, we address these limitations by proposing a novel Hybrid and Precision-guided filter Pruning method (HP<sup>2</sup>) for CNN compression, driven by two key observations. In particular, our method enhances filter importance evaluation and enables targeted filter pruning, allowing flexible reduction of computational complexity (FLOPs) or memory (parameters). We introduce the Hybrid Importance Score (HIS) to assess precise filter importance by leveraging both filter weights and activations. Moreover, we quantitatively analyze the intricate relationship between FLOPs and parameters, leading to an on-demand pruning strategy that further optimizes FLOPs or parameter reduction. Extensive experiments showcase the superiority of HP<sup>2</sup> over state-of-the-art CNN compression methods, particularly under high pruning ratios.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"725 ","pages":"Article 122741"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HP2: Hybrid and precision-guided filter pruning for CNN compression\",\"authors\":\"Zhichao Zhao ,&nbsp;Shangwei Guo ,&nbsp;Jialing He ,&nbsp;Yafei Li ,&nbsp;Run Wang ,&nbsp;Tao Xiang\",\"doi\":\"10.1016/j.ins.2025.122741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Filter pruning has emerged as a promising approach for compressing Convolutional Neural Network (CNN) models. However, existing methods often lack accuracy in evaluating filter importance and precision in on-demand filter pruning. In this paper, we address these limitations by proposing a novel Hybrid and Precision-guided filter Pruning method (HP<sup>2</sup>) for CNN compression, driven by two key observations. In particular, our method enhances filter importance evaluation and enables targeted filter pruning, allowing flexible reduction of computational complexity (FLOPs) or memory (parameters). We introduce the Hybrid Importance Score (HIS) to assess precise filter importance by leveraging both filter weights and activations. Moreover, we quantitatively analyze the intricate relationship between FLOPs and parameters, leading to an on-demand pruning strategy that further optimizes FLOPs or parameter reduction. Extensive experiments showcase the superiority of HP<sup>2</sup> over state-of-the-art CNN compression methods, particularly under high pruning ratios.</div></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":\"725 \",\"pages\":\"Article 122741\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025525008771\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525008771","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

过滤器修剪已经成为一种很有前途的方法来压缩卷积神经网络(CNN)模型。然而,现有方法在评估过滤器重要性和按需过滤器修剪精度方面往往缺乏准确性。在本文中,我们通过提出一种用于CNN压缩的新型混合和精确制导滤波器修剪方法(HP2)来解决这些限制,该方法由两个关键观测驱动。特别是,我们的方法增强了滤波器重要性评估,并支持有针对性的滤波器修剪,从而可以灵活地降低计算复杂性(FLOPs)或内存(参数)。我们引入混合重要性评分(HIS),通过利用过滤器权重和激活来评估精确的过滤器重要性。此外,我们定量分析了FLOPs和参数之间的复杂关系,从而得出了一种按需修剪策略,该策略进一步优化了FLOPs或参数缩减。大量的实验表明,HP2优于最先进的CNN压缩方法,特别是在高修剪比下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HP2: Hybrid and precision-guided filter pruning for CNN compression
Filter pruning has emerged as a promising approach for compressing Convolutional Neural Network (CNN) models. However, existing methods often lack accuracy in evaluating filter importance and precision in on-demand filter pruning. In this paper, we address these limitations by proposing a novel Hybrid and Precision-guided filter Pruning method (HP2) for CNN compression, driven by two key observations. In particular, our method enhances filter importance evaluation and enables targeted filter pruning, allowing flexible reduction of computational complexity (FLOPs) or memory (parameters). We introduce the Hybrid Importance Score (HIS) to assess precise filter importance by leveraging both filter weights and activations. Moreover, we quantitatively analyze the intricate relationship between FLOPs and parameters, leading to an on-demand pruning strategy that further optimizes FLOPs or parameter reduction. Extensive experiments showcase the superiority of HP2 over state-of-the-art CNN compression methods, particularly under high pruning ratios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信