MAGNet:一种用于早期错误信息检测的多模态知识增强图网络

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wang Jinghong , Yang Hongbo , Wang Xizhao , Wang Wei , Li Yanan
{"title":"MAGNet:一种用于早期错误信息检测的多模态知识增强图网络","authors":"Wang Jinghong ,&nbsp;Yang Hongbo ,&nbsp;Wang Xizhao ,&nbsp;Wang Wei ,&nbsp;Li Yanan","doi":"10.1016/j.neucom.2025.131533","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid proliferation of multimodal misinformation on social media, detecting such content has become increasingly challenging. Existing approaches often rely on flat or shallow fusion strategies, which fail to capture structured semantic interactions across modalities. Moreover, most methods lack controllable, task-relevant mechanisms for integrating external knowledge, limiting their adaptability to emerging misinformation. In this paper, we present MAGNet, a Multimodal Augmented Graph Network that models fine-grained features with LLM-enhanced contextual knowledge through a hierarchical graph attention framework. MAGNet constructs heterogeneous graphs with modality- and context-specific edge weights based on semantic and affective alignment, enabling progressive reasoning from local features to global representations. Extensive experiments on three real-world datasets demonstrate that MAGNet consistently outperforms strong baselines across multiple evaluation metrics. The results underscore the effectiveness of combining graph-based modeling, fine-grained fusion, and structured knowledge integration in developing scalable and robust solutions for multimodal misinformation detection.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"658 ","pages":"Article 131533"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MAGNet: A multimodal knowledge-augmented graph network for early-stage misinformation detection\",\"authors\":\"Wang Jinghong ,&nbsp;Yang Hongbo ,&nbsp;Wang Xizhao ,&nbsp;Wang Wei ,&nbsp;Li Yanan\",\"doi\":\"10.1016/j.neucom.2025.131533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the rapid proliferation of multimodal misinformation on social media, detecting such content has become increasingly challenging. Existing approaches often rely on flat or shallow fusion strategies, which fail to capture structured semantic interactions across modalities. Moreover, most methods lack controllable, task-relevant mechanisms for integrating external knowledge, limiting their adaptability to emerging misinformation. In this paper, we present MAGNet, a Multimodal Augmented Graph Network that models fine-grained features with LLM-enhanced contextual knowledge through a hierarchical graph attention framework. MAGNet constructs heterogeneous graphs with modality- and context-specific edge weights based on semantic and affective alignment, enabling progressive reasoning from local features to global representations. Extensive experiments on three real-world datasets demonstrate that MAGNet consistently outperforms strong baselines across multiple evaluation metrics. The results underscore the effectiveness of combining graph-based modeling, fine-grained fusion, and structured knowledge integration in developing scalable and robust solutions for multimodal misinformation detection.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"658 \",\"pages\":\"Article 131533\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225022052\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225022052","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着社交媒体上多模式错误信息的迅速扩散,检测此类内容变得越来越具有挑战性。现有的方法通常依赖于扁平或浅层的融合策略,这些策略无法捕获跨模态的结构化语义交互。此外,大多数方法缺乏可控制的、任务相关的机制来整合外部知识,限制了它们对新出现的错误信息的适应性。在本文中,我们提出了MAGNet,这是一个多模态增强图网络,通过分层图注意力框架,用llm增强的上下文知识对细粒度特征进行建模。MAGNet基于语义和情感对齐构建具有模态和上下文特定边缘权重的异构图,从而实现从局部特征到全局表征的渐进推理。在三个真实数据集上进行的广泛实验表明,MAGNet在多个评估指标上的表现始终优于强基线。研究结果强调了将基于图的建模、细粒度融合和结构化知识集成相结合,为多模态错误信息检测开发可扩展且健壮的解决方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MAGNet: A multimodal knowledge-augmented graph network for early-stage misinformation detection
With the rapid proliferation of multimodal misinformation on social media, detecting such content has become increasingly challenging. Existing approaches often rely on flat or shallow fusion strategies, which fail to capture structured semantic interactions across modalities. Moreover, most methods lack controllable, task-relevant mechanisms for integrating external knowledge, limiting their adaptability to emerging misinformation. In this paper, we present MAGNet, a Multimodal Augmented Graph Network that models fine-grained features with LLM-enhanced contextual knowledge through a hierarchical graph attention framework. MAGNet constructs heterogeneous graphs with modality- and context-specific edge weights based on semantic and affective alignment, enabling progressive reasoning from local features to global representations. Extensive experiments on three real-world datasets demonstrate that MAGNet consistently outperforms strong baselines across multiple evaluation metrics. The results underscore the effectiveness of combining graph-based modeling, fine-grained fusion, and structured knowledge integration in developing scalable and robust solutions for multimodal misinformation detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信