RAAG:用于高效视频动作检测的冗余自适应和注意力引导令牌修剪

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jun Chen , Sailong Deng , Wei Yu , Longsheng Wei
{"title":"RAAG:用于高效视频动作检测的冗余自适应和注意力引导令牌修剪","authors":"Jun Chen ,&nbsp;Sailong Deng ,&nbsp;Wei Yu ,&nbsp;Longsheng Wei","doi":"10.1016/j.neucom.2025.131615","DOIUrl":null,"url":null,"abstract":"<div><div>Video action detection faces significant computational challenges, especially with high-resolution and long video sequences. Existing fixed-rate pruning methods are often suboptimal, risking crucial information loss or retaining excessive redundancy. This paper introduces Redundancy-Adaptive and Attention-Guided Token Pruning (RAAG), a novel, adaptive framework for efficient end-to-end video action detection. RAAG integrates Information Redundancy-Adaptive Token Pruning (IRTP), which dynamically adjusts token keep rate based on inter-frame information redundancy, and a Hierarchical Attention-Guided (HAG) strategy, which refines pruning by allocating distinct layer-specific rates to preserve essential features in early layers and aggressively prune in actor-focused middle layers. Comprehensive experiments on AVA 2.2, JHMDB, and UCF101-24 demonstrate RAAG’s superior performance. Notably, RAAG (ViT-L) achieves 40.5 mAP on AVA 2.2, and robustly performs on JHMDB (90.7 mAP) and UCF101-24 (86.5 mAP). These results validate RAAG’s ability to intelligently balance computational efficiency with detection accuracy across diverse video contents.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"658 ","pages":"Article 131615"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RAAG:Redundancy-adaptive and attention-guided token pruning for efficient video action detection\",\"authors\":\"Jun Chen ,&nbsp;Sailong Deng ,&nbsp;Wei Yu ,&nbsp;Longsheng Wei\",\"doi\":\"10.1016/j.neucom.2025.131615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Video action detection faces significant computational challenges, especially with high-resolution and long video sequences. Existing fixed-rate pruning methods are often suboptimal, risking crucial information loss or retaining excessive redundancy. This paper introduces Redundancy-Adaptive and Attention-Guided Token Pruning (RAAG), a novel, adaptive framework for efficient end-to-end video action detection. RAAG integrates Information Redundancy-Adaptive Token Pruning (IRTP), which dynamically adjusts token keep rate based on inter-frame information redundancy, and a Hierarchical Attention-Guided (HAG) strategy, which refines pruning by allocating distinct layer-specific rates to preserve essential features in early layers and aggressively prune in actor-focused middle layers. Comprehensive experiments on AVA 2.2, JHMDB, and UCF101-24 demonstrate RAAG’s superior performance. Notably, RAAG (ViT-L) achieves 40.5 mAP on AVA 2.2, and robustly performs on JHMDB (90.7 mAP) and UCF101-24 (86.5 mAP). These results validate RAAG’s ability to intelligently balance computational efficiency with detection accuracy across diverse video contents.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"658 \",\"pages\":\"Article 131615\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225022878\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225022878","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

视频动作检测面临着巨大的计算挑战,特别是高分辨率和长视频序列。现有的固定速率修剪方法通常不是最优的,有丢失关键信息或保留过多冗余的风险。本文介绍了冗余自适应和注意力引导令牌修剪(RAAG),这是一种新的自适应框架,用于高效的端到端视频动作检测。RAAG集成了信息冗余-自适应令牌修剪(IRTP)和分层注意引导(HAG)策略,IRTP基于帧间信息冗余动态调整令牌保持率,分层注意引导(HAG)策略通过分配不同的层特定率来改进修剪,以保留早期层的基本特征,并在以参与者为中心的中间层进行积极修剪。在AVA 2.2、JHMDB和UCF101-24上的综合实验证明了RAAG优越的性能。值得注意的是,RAAG (viti - l)在AVA 2.2上实现了40.5 mAP,在JHMDB (90.7 mAP)和UCF101-24 (86.5 mAP)上表现稳健。这些结果验证了RAAG在不同视频内容中智能平衡计算效率和检测精度的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RAAG:Redundancy-adaptive and attention-guided token pruning for efficient video action detection
Video action detection faces significant computational challenges, especially with high-resolution and long video sequences. Existing fixed-rate pruning methods are often suboptimal, risking crucial information loss or retaining excessive redundancy. This paper introduces Redundancy-Adaptive and Attention-Guided Token Pruning (RAAG), a novel, adaptive framework for efficient end-to-end video action detection. RAAG integrates Information Redundancy-Adaptive Token Pruning (IRTP), which dynamically adjusts token keep rate based on inter-frame information redundancy, and a Hierarchical Attention-Guided (HAG) strategy, which refines pruning by allocating distinct layer-specific rates to preserve essential features in early layers and aggressively prune in actor-focused middle layers. Comprehensive experiments on AVA 2.2, JHMDB, and UCF101-24 demonstrate RAAG’s superior performance. Notably, RAAG (ViT-L) achieves 40.5 mAP on AVA 2.2, and robustly performs on JHMDB (90.7 mAP) and UCF101-24 (86.5 mAP). These results validate RAAG’s ability to intelligently balance computational efficiency with detection accuracy across diverse video contents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信