音频深度假检测的自适应逆摄动网络

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xue Ouyang , Chunhui Wang , Bin Zhao , Hao Li
{"title":"音频深度假检测的自适应逆摄动网络","authors":"Xue Ouyang ,&nbsp;Chunhui Wang ,&nbsp;Bin Zhao ,&nbsp;Hao Li","doi":"10.1016/j.neucom.2025.131466","DOIUrl":null,"url":null,"abstract":"<div><div>The growing prevalence of audio deepfakes underscores the urgent need for advanced detection frameworks capable of identifying subtle synthetic artifacts. In response to this challenge, we propose an Adaptive Reverse Perturbation Network, a novel architecture that leverages partial reversal strategies on speech segments and incorporates hierarchical feature discrepancy analysis to enhance deepfake detection. Specifically, the proposed framework employs learnable reversal modules to capture phase discontinuities and spectral anomalies, and utilizes Prime-window reversal to reveal synthetic artifacts that emerge exclusively in reversed speech. Evaluations conducted on five benchmark datasets demonstrate the superior performance of the proposed method, achieving an equal error rate of 1.98 %, representing a 39.6 % improvement over previous systems, as well as a t-DCF of 0.237. Further analysis reveals an inverse correlation between language-specific weight similarity and detection accuracy. These results validate the effectiveness of the trainable differential convolution and reverse perturbation strategies in combating the evolving threat of audio deepfakes, and provide novel insights into phonological artifact patterns associated with synthetic speech.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"658 ","pages":"Article 131466"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive reverse perturbation network for audio deepfake detection\",\"authors\":\"Xue Ouyang ,&nbsp;Chunhui Wang ,&nbsp;Bin Zhao ,&nbsp;Hao Li\",\"doi\":\"10.1016/j.neucom.2025.131466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing prevalence of audio deepfakes underscores the urgent need for advanced detection frameworks capable of identifying subtle synthetic artifacts. In response to this challenge, we propose an Adaptive Reverse Perturbation Network, a novel architecture that leverages partial reversal strategies on speech segments and incorporates hierarchical feature discrepancy analysis to enhance deepfake detection. Specifically, the proposed framework employs learnable reversal modules to capture phase discontinuities and spectral anomalies, and utilizes Prime-window reversal to reveal synthetic artifacts that emerge exclusively in reversed speech. Evaluations conducted on five benchmark datasets demonstrate the superior performance of the proposed method, achieving an equal error rate of 1.98 %, representing a 39.6 % improvement over previous systems, as well as a t-DCF of 0.237. Further analysis reveals an inverse correlation between language-specific weight similarity and detection accuracy. These results validate the effectiveness of the trainable differential convolution and reverse perturbation strategies in combating the evolving threat of audio deepfakes, and provide novel insights into phonological artifact patterns associated with synthetic speech.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"658 \",\"pages\":\"Article 131466\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225021381\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225021381","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

音频深度伪造的日益流行凸显了对能够识别细微合成伪影的先进检测框架的迫切需求。为了应对这一挑战,我们提出了一种自适应反向扰动网络,这是一种利用语音片段部分反转策略并结合分层特征差异分析来增强深度假检测的新架构。具体而言,所提出的框架采用可学习的反转模块来捕获相位不连续和频谱异常,并利用Prime-window反转来揭示仅在反转语音中出现的合成伪影。在五个基准数据集上进行的评估表明,所提出的方法性能优越,错误率为1.98%,比以前的系统提高了39.6%,t-DCF为0.237。进一步分析表明,语言特定权重相似度与检测准确率呈负相关关系。这些结果验证了可训练微分卷积和反向扰动策略在对抗音频深度伪造威胁方面的有效性,并为与合成语音相关的语音伪影模式提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive reverse perturbation network for audio deepfake detection
The growing prevalence of audio deepfakes underscores the urgent need for advanced detection frameworks capable of identifying subtle synthetic artifacts. In response to this challenge, we propose an Adaptive Reverse Perturbation Network, a novel architecture that leverages partial reversal strategies on speech segments and incorporates hierarchical feature discrepancy analysis to enhance deepfake detection. Specifically, the proposed framework employs learnable reversal modules to capture phase discontinuities and spectral anomalies, and utilizes Prime-window reversal to reveal synthetic artifacts that emerge exclusively in reversed speech. Evaluations conducted on five benchmark datasets demonstrate the superior performance of the proposed method, achieving an equal error rate of 1.98 %, representing a 39.6 % improvement over previous systems, as well as a t-DCF of 0.237. Further analysis reveals an inverse correlation between language-specific weight similarity and detection accuracy. These results validate the effectiveness of the trainable differential convolution and reverse perturbation strategies in combating the evolving threat of audio deepfakes, and provide novel insights into phonological artifact patterns associated with synthetic speech.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信