基于动态分布对齐网络的无监督域自适应脑电信号情感识别

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jiahao Tang , Youjun Li , Chun-Wang Su , Xiangting Fan , Yangxuan Zheng , Haoyu Wang , Hadia Naeem , Peng Fang , Jue Wang , Nan Yao , Xueping Li , Zi-Gang Huang
{"title":"基于动态分布对齐网络的无监督域自适应脑电信号情感识别","authors":"Jiahao Tang ,&nbsp;Youjun Li ,&nbsp;Chun-Wang Su ,&nbsp;Xiangting Fan ,&nbsp;Yangxuan Zheng ,&nbsp;Haoyu Wang ,&nbsp;Hadia Naeem ,&nbsp;Peng Fang ,&nbsp;Jue Wang ,&nbsp;Nan Yao ,&nbsp;Xueping Li ,&nbsp;Zi-Gang Huang","doi":"10.1016/j.neucom.2025.131715","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we address the challenge of individual variability in affective brain-computer interfaces (aBCI), which employ electroencephalogram (EEG) signals to monitor and recognize human emotional states, thereby facilitating the advancement of emotion-aware technologies. The variability in EEG data across individuals poses a significant barrier to the development of effective and widely applicable aBCI models. To mitigate this issue, we propose a novel transfer learning framework called Unsupervised Domain Adaptation (UDA) with Dynamic Distribution Alignment (UDA-DDA). This approach aligns the marginal and conditional probability distributions of source and target domains by employing maximum mean discrepancy (MMD) and conditional maximum mean discrepancy (CMMD). Firstly, we introduce a dynamic distribution alignment mechanism to adjust differences throughout training and enhance adaptation. Additionally, a pseudo-label confidence filtering module is integrated into the unsupervised process to refine pseudo-label generation and optimize the estimation of conditional distributions. In order to demonstrate the effectiveness and robustness of the proposed UDA-DDA method, extensive experiments are conducted on EEG benchmark databases (SEED, SEED-IV and DEAP). Evaluations of the algorithm’s performance in comparison with other UDA with dynamic distribution alignment network methods indicate the proposed method achieves state-of-the-art results in emotion recognition across various scenarios, including cross-subject and cross-session conditions. This advancement significantly enhances the accuracy and generalization of emotion recognition, potentially fostering the development of personalized aBCI applications. The source code is accessible at <span><span>https://github.com/XuanSuTrum/UDA-DDA</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"658 ","pages":"Article 131715"},"PeriodicalIF":6.5000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UDA-DDA: Unsupervised domain adaptation with dynamic distribution alignment network for emotion recognition using EEG signals\",\"authors\":\"Jiahao Tang ,&nbsp;Youjun Li ,&nbsp;Chun-Wang Su ,&nbsp;Xiangting Fan ,&nbsp;Yangxuan Zheng ,&nbsp;Haoyu Wang ,&nbsp;Hadia Naeem ,&nbsp;Peng Fang ,&nbsp;Jue Wang ,&nbsp;Nan Yao ,&nbsp;Xueping Li ,&nbsp;Zi-Gang Huang\",\"doi\":\"10.1016/j.neucom.2025.131715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we address the challenge of individual variability in affective brain-computer interfaces (aBCI), which employ electroencephalogram (EEG) signals to monitor and recognize human emotional states, thereby facilitating the advancement of emotion-aware technologies. The variability in EEG data across individuals poses a significant barrier to the development of effective and widely applicable aBCI models. To mitigate this issue, we propose a novel transfer learning framework called Unsupervised Domain Adaptation (UDA) with Dynamic Distribution Alignment (UDA-DDA). This approach aligns the marginal and conditional probability distributions of source and target domains by employing maximum mean discrepancy (MMD) and conditional maximum mean discrepancy (CMMD). Firstly, we introduce a dynamic distribution alignment mechanism to adjust differences throughout training and enhance adaptation. Additionally, a pseudo-label confidence filtering module is integrated into the unsupervised process to refine pseudo-label generation and optimize the estimation of conditional distributions. In order to demonstrate the effectiveness and robustness of the proposed UDA-DDA method, extensive experiments are conducted on EEG benchmark databases (SEED, SEED-IV and DEAP). Evaluations of the algorithm’s performance in comparison with other UDA with dynamic distribution alignment network methods indicate the proposed method achieves state-of-the-art results in emotion recognition across various scenarios, including cross-subject and cross-session conditions. This advancement significantly enhances the accuracy and generalization of emotion recognition, potentially fostering the development of personalized aBCI applications. The source code is accessible at <span><span>https://github.com/XuanSuTrum/UDA-DDA</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"658 \",\"pages\":\"Article 131715\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225023872\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225023872","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们解决了情感脑机接口(aBCI)中个体差异的挑战,该接口利用脑电图(EEG)信号来监测和识别人类的情绪状态,从而促进了情绪感知技术的发展。个体间脑电图数据的可变性对开发有效且广泛适用的脑脑损伤模型构成了重大障碍。为了解决这个问题,我们提出了一种新的迁移学习框架,称为无监督域自适应(UDA)与动态分布对齐(UDA- dda)。该方法利用最大均值差异(MMD)和条件最大均值差异(CMMD)对源域和目标域的边缘概率和条件概率分布进行对齐。首先,引入动态分布对齐机制,调整训练过程中的差异,增强适应性。此外,将伪标签置信度滤波模块集成到无监督过程中,以改进伪标签生成并优化条件分布的估计。为了验证该方法的有效性和鲁棒性,在EEG基准数据库(SEED、SEED- iv和DEAP)上进行了大量实验。与其他具有动态分布对齐网络方法的UDA相比,该算法的性能评估表明,所提出的方法在跨各种场景(包括跨主题和跨会话条件)的情感识别中取得了最先进的结果。这一进展显著提高了情绪识别的准确性和泛化程度,有可能促进个性化aBCI应用的发展。源代码可从https://github.com/XuanSuTrum/UDA-DDA访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UDA-DDA: Unsupervised domain adaptation with dynamic distribution alignment network for emotion recognition using EEG signals
In this paper, we address the challenge of individual variability in affective brain-computer interfaces (aBCI), which employ electroencephalogram (EEG) signals to monitor and recognize human emotional states, thereby facilitating the advancement of emotion-aware technologies. The variability in EEG data across individuals poses a significant barrier to the development of effective and widely applicable aBCI models. To mitigate this issue, we propose a novel transfer learning framework called Unsupervised Domain Adaptation (UDA) with Dynamic Distribution Alignment (UDA-DDA). This approach aligns the marginal and conditional probability distributions of source and target domains by employing maximum mean discrepancy (MMD) and conditional maximum mean discrepancy (CMMD). Firstly, we introduce a dynamic distribution alignment mechanism to adjust differences throughout training and enhance adaptation. Additionally, a pseudo-label confidence filtering module is integrated into the unsupervised process to refine pseudo-label generation and optimize the estimation of conditional distributions. In order to demonstrate the effectiveness and robustness of the proposed UDA-DDA method, extensive experiments are conducted on EEG benchmark databases (SEED, SEED-IV and DEAP). Evaluations of the algorithm’s performance in comparison with other UDA with dynamic distribution alignment network methods indicate the proposed method achieves state-of-the-art results in emotion recognition across various scenarios, including cross-subject and cross-session conditions. This advancement significantly enhances the accuracy and generalization of emotion recognition, potentially fostering the development of personalized aBCI applications. The source code is accessible at https://github.com/XuanSuTrum/UDA-DDA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信