分裂计算中分布式神经网络潜在表征的对抗性攻击

IF 4.6 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Milin Zhang , Mohammad Abdi , Jonathan Ashdown , Francesco Restuccia
{"title":"分裂计算中分布式神经网络潜在表征的对抗性攻击","authors":"Milin Zhang ,&nbsp;Mohammad Abdi ,&nbsp;Jonathan Ashdown ,&nbsp;Francesco Restuccia","doi":"10.1016/j.comnet.2025.111755","DOIUrl":null,"url":null,"abstract":"<div><div>Distributed deep neural networks (DNNs) have been shown to reduce the computational burden of mobile devices and decrease the end-to-end inference latency in edge computing scenarios<span><span><sup>1</sup></span></span> While distributed DNNs have been studied, the resilience of distributed DNNs to adversarial action remains an open problem. In this paper, we fill the existing research gap by rigorously analyzing the robustness of distributed DNNs against adversarial action. We cast this problem in the context of information theory and rigorously provedx that (i) the compressed latent dimension improves the robustness but also affect task-oriented performance; and (ii) the deeper splitting point enhances the robustness but also increases the computational burden. These two trade-offs provide a novel perspective to design robust distributed DNN. To test our theoretical findings, we perform extensive experimental analysis by considering 6 different DNN architectures, 6 different approaches for distributed DNN and 10 different adversarial attacks using the ImageNet-1K dataset.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"273 ","pages":"Article 111755"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adversarial attacks to latent representations of distributed neural networks in split computing\",\"authors\":\"Milin Zhang ,&nbsp;Mohammad Abdi ,&nbsp;Jonathan Ashdown ,&nbsp;Francesco Restuccia\",\"doi\":\"10.1016/j.comnet.2025.111755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Distributed deep neural networks (DNNs) have been shown to reduce the computational burden of mobile devices and decrease the end-to-end inference latency in edge computing scenarios<span><span><sup>1</sup></span></span> While distributed DNNs have been studied, the resilience of distributed DNNs to adversarial action remains an open problem. In this paper, we fill the existing research gap by rigorously analyzing the robustness of distributed DNNs against adversarial action. We cast this problem in the context of information theory and rigorously provedx that (i) the compressed latent dimension improves the robustness but also affect task-oriented performance; and (ii) the deeper splitting point enhances the robustness but also increases the computational burden. These two trade-offs provide a novel perspective to design robust distributed DNN. To test our theoretical findings, we perform extensive experimental analysis by considering 6 different DNN architectures, 6 different approaches for distributed DNN and 10 different adversarial attacks using the ImageNet-1K dataset.</div></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":\"273 \",\"pages\":\"Article 111755\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128625007212\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625007212","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

分布式深度神经网络(dnn)已被证明可以减少移动设备的计算负担,并减少边缘计算场景中的端到端推理延迟1。尽管已经对分布式dnn进行了研究,但分布式dnn对对抗行为的弹性仍然是一个开放的问题。在本文中,我们通过严格分析分布式dnn对对抗作用的鲁棒性来填补现有的研究空白。我们将这个问题置于信息论的背景下,并严格证明:(i)压缩的潜在维数提高了鲁棒性,但也影响了面向任务的性能;(ii)更深的分裂点增强了鲁棒性,但也增加了计算量。这两种权衡为设计鲁棒分布式深度神经网络提供了一种新的视角。为了测试我们的理论发现,我们使用ImageNet-1K数据集,通过考虑6种不同的DNN架构,6种不同的分布式DNN方法和10种不同的对抗性攻击,进行了广泛的实验分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adversarial attacks to latent representations of distributed neural networks in split computing
Distributed deep neural networks (DNNs) have been shown to reduce the computational burden of mobile devices and decrease the end-to-end inference latency in edge computing scenarios1 While distributed DNNs have been studied, the resilience of distributed DNNs to adversarial action remains an open problem. In this paper, we fill the existing research gap by rigorously analyzing the robustness of distributed DNNs against adversarial action. We cast this problem in the context of information theory and rigorously provedx that (i) the compressed latent dimension improves the robustness but also affect task-oriented performance; and (ii) the deeper splitting point enhances the robustness but also increases the computational burden. These two trade-offs provide a novel perspective to design robust distributed DNN. To test our theoretical findings, we perform extensive experimental analysis by considering 6 different DNN architectures, 6 different approaches for distributed DNN and 10 different adversarial attacks using the ImageNet-1K dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信