薄荷精油的抗糖尿病潜力:GC-MS分析,体外,体内和计算机分析

IF 4.7 2区 化学 Q2 CHEMISTRY, PHYSICAL
Elhafnaoui Lanez , Yahia Bekkar , Lotfi Bourougaa , Mohammed Larbi Benamor , Rania Bouraoui , Ouafa Boudebia , Aicha Adaika , Kaouther Nesba , Housseyn Chaoua , Lazhar Bechki , Touhami Lanez , Huda Alsaeedi , Mikhael Bechelany , Ahmed Barhoum
{"title":"薄荷精油的抗糖尿病潜力:GC-MS分析,体外,体内和计算机分析","authors":"Elhafnaoui Lanez ,&nbsp;Yahia Bekkar ,&nbsp;Lotfi Bourougaa ,&nbsp;Mohammed Larbi Benamor ,&nbsp;Rania Bouraoui ,&nbsp;Ouafa Boudebia ,&nbsp;Aicha Adaika ,&nbsp;Kaouther Nesba ,&nbsp;Housseyn Chaoua ,&nbsp;Lazhar Bechki ,&nbsp;Touhami Lanez ,&nbsp;Huda Alsaeedi ,&nbsp;Mikhael Bechelany ,&nbsp;Ahmed Barhoum","doi":"10.1016/j.molstruc.2025.144239","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, <em>Mentha piperita</em> essential oil (EO) antidiabetic activity was thoroughly investigated using a multidisciplinary approach. Gas chromatography–mass spectrometry (GC–MS) identified some key bioactive compounds, including pulegone, α-terpineol, borneol, linalool acetate, menthone, eucalyptol, and trans-sabinene hydrate. Their relative percentages in the EO (&gt;1 % w/w) were indicative of biological importance. In vitro enzyme inhibitory assays displayed strong inhibitory effects of the EO on the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase and stronger inhibitory action than the standard antidiabetic compound acarbose. In vivo research in diabetic rats induced by alloxan monohydrate reaffirmed the hypoglycemic effect of the EO with the lowering of fasting blood glucose level by 33 % after 14 days of treatment. Molecular docking experiments indicated greater binding affinities of pulegone for α-amylase (ΔG = –5.83 kcal·mol⁻¹) and linalool acetate for α-glucosidase (ΔG = –6.95 kcal·mol⁻¹) compared to acarbose (ΔG = –4.51 and –6.09 kcal·mol⁻¹, respectively). Molecular dynamics simulations also validated the structural stability and optimal interaction dynamics of principal EO components with α-amylase and α-glucosidase. Eucalyptol and linalool acetate possessed minimum root-mean-square deviation (RMSD) and solvent-accessible surface area (SASA) against α-amylase, showing high stability of complex, while α-terpineol and eucalyptol exhibited good binding affinity towards α-glucosidase. MM-PBSA binding free energy calculations revealed that linalool acetate and eucalyptol were the best inhibitory agents for α-amylase (–26.98 and –26.45 kcal·mol⁻¹) and α-glucosidase (–20.41 and –20.71 kcal·mol⁻¹), respectively. DFT analysis also yielded more insight into their electronic properties, reactivity, and stability, further establishing their enzyme inhibition activity. These findings introduce <em>M. piperita</em> EO as a natural agent with α-amylase and α-glucosidase inhibition potential for the management of diabetes and glycemia.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1351 ","pages":"Article 144239"},"PeriodicalIF":4.7000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antidiabetic potential of Mentha piperita essential oil: GC–MS profiling, in vitro, in vivo and in silico analyses\",\"authors\":\"Elhafnaoui Lanez ,&nbsp;Yahia Bekkar ,&nbsp;Lotfi Bourougaa ,&nbsp;Mohammed Larbi Benamor ,&nbsp;Rania Bouraoui ,&nbsp;Ouafa Boudebia ,&nbsp;Aicha Adaika ,&nbsp;Kaouther Nesba ,&nbsp;Housseyn Chaoua ,&nbsp;Lazhar Bechki ,&nbsp;Touhami Lanez ,&nbsp;Huda Alsaeedi ,&nbsp;Mikhael Bechelany ,&nbsp;Ahmed Barhoum\",\"doi\":\"10.1016/j.molstruc.2025.144239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, <em>Mentha piperita</em> essential oil (EO) antidiabetic activity was thoroughly investigated using a multidisciplinary approach. Gas chromatography–mass spectrometry (GC–MS) identified some key bioactive compounds, including pulegone, α-terpineol, borneol, linalool acetate, menthone, eucalyptol, and trans-sabinene hydrate. Their relative percentages in the EO (&gt;1 % w/w) were indicative of biological importance. In vitro enzyme inhibitory assays displayed strong inhibitory effects of the EO on the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase and stronger inhibitory action than the standard antidiabetic compound acarbose. In vivo research in diabetic rats induced by alloxan monohydrate reaffirmed the hypoglycemic effect of the EO with the lowering of fasting blood glucose level by 33 % after 14 days of treatment. Molecular docking experiments indicated greater binding affinities of pulegone for α-amylase (ΔG = –5.83 kcal·mol⁻¹) and linalool acetate for α-glucosidase (ΔG = –6.95 kcal·mol⁻¹) compared to acarbose (ΔG = –4.51 and –6.09 kcal·mol⁻¹, respectively). Molecular dynamics simulations also validated the structural stability and optimal interaction dynamics of principal EO components with α-amylase and α-glucosidase. Eucalyptol and linalool acetate possessed minimum root-mean-square deviation (RMSD) and solvent-accessible surface area (SASA) against α-amylase, showing high stability of complex, while α-terpineol and eucalyptol exhibited good binding affinity towards α-glucosidase. MM-PBSA binding free energy calculations revealed that linalool acetate and eucalyptol were the best inhibitory agents for α-amylase (–26.98 and –26.45 kcal·mol⁻¹) and α-glucosidase (–20.41 and –20.71 kcal·mol⁻¹), respectively. DFT analysis also yielded more insight into their electronic properties, reactivity, and stability, further establishing their enzyme inhibition activity. These findings introduce <em>M. piperita</em> EO as a natural agent with α-amylase and α-glucosidase inhibition potential for the management of diabetes and glycemia.</div></div>\",\"PeriodicalId\":16414,\"journal\":{\"name\":\"Journal of Molecular Structure\",\"volume\":\"1351 \",\"pages\":\"Article 144239\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Structure\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022286025028832\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286025028832","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,薄荷精油(EO)的抗糖尿病活性进行了深入研究,采用多学科的方法。气相色谱-质谱联用(GC-MS)鉴定出一些关键的生物活性化合物,包括普莱酮、α-松油醇、冰片、醋酸芳樟醇、薄荷酮、桉油醇和水合反式sabinene。它们在EO中的相对百分比(> 1% w/w)表明了生物重要性。体外酶抑制实验表明,EO对糖水解酶α-淀粉酶和α-葡萄糖苷酶有较强的抑制作用,比标准降糖化合物阿卡波糖的抑制作用更强。对一水四氧嘧啶诱导的糖尿病大鼠的体内研究再次证实了EO的降糖作用,治疗14天后,其空腹血糖水平降低了33%。分子对接实验表明,与阿卡波糖(ΔG = -4.51和-6.09千卡·摩尔⁻¹)相比,普莱酮对α-淀粉酶(ΔG = -5.83千卡·摩尔⁻¹)和乙酸芳樟醇对α-葡萄糖苷酶(ΔG = -6.95千卡·摩尔⁻¹)的结合能力更强。分子动力学模拟还验证了EO主要组分与α-淀粉酶和α-葡萄糖苷酶的结构稳定性和最佳相互作用动力学。桉油醇和乙酸芳樟醇对α-淀粉酶具有最小的均方根偏差(RMSD)和溶剂可及表面积(SASA),具有较高的配合物稳定性,而α-松油醇和桉油醇对α-葡萄糖苷酶具有良好的结合亲和力。MM-PBSA结合自由能计算结果显示,醋酸芳樟醇和桉树醇分别是α-淀粉酶(-26.98和-26.45 kcal·mol⁻¹)和α-葡萄糖苷酶(-20.41和-20.71 kcal·mol⁻¹)的最佳抑制剂。DFT分析还对它们的电子性质、反应性和稳定性有了更深入的了解,进一步确定了它们的酶抑制活性。这些研究结果表明,胡椒毛霉EO是一种具有α-淀粉酶和α-葡萄糖苷酶抑制潜力的天然药物,可用于治疗糖尿病和血糖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Antidiabetic potential of Mentha piperita essential oil: GC–MS profiling, in vitro, in vivo and in silico analyses

Antidiabetic potential of Mentha piperita essential oil: GC–MS profiling, in vitro, in vivo and in silico analyses
In this study, Mentha piperita essential oil (EO) antidiabetic activity was thoroughly investigated using a multidisciplinary approach. Gas chromatography–mass spectrometry (GC–MS) identified some key bioactive compounds, including pulegone, α-terpineol, borneol, linalool acetate, menthone, eucalyptol, and trans-sabinene hydrate. Their relative percentages in the EO (>1 % w/w) were indicative of biological importance. In vitro enzyme inhibitory assays displayed strong inhibitory effects of the EO on the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase and stronger inhibitory action than the standard antidiabetic compound acarbose. In vivo research in diabetic rats induced by alloxan monohydrate reaffirmed the hypoglycemic effect of the EO with the lowering of fasting blood glucose level by 33 % after 14 days of treatment. Molecular docking experiments indicated greater binding affinities of pulegone for α-amylase (ΔG = –5.83 kcal·mol⁻¹) and linalool acetate for α-glucosidase (ΔG = –6.95 kcal·mol⁻¹) compared to acarbose (ΔG = –4.51 and –6.09 kcal·mol⁻¹, respectively). Molecular dynamics simulations also validated the structural stability and optimal interaction dynamics of principal EO components with α-amylase and α-glucosidase. Eucalyptol and linalool acetate possessed minimum root-mean-square deviation (RMSD) and solvent-accessible surface area (SASA) against α-amylase, showing high stability of complex, while α-terpineol and eucalyptol exhibited good binding affinity towards α-glucosidase. MM-PBSA binding free energy calculations revealed that linalool acetate and eucalyptol were the best inhibitory agents for α-amylase (–26.98 and –26.45 kcal·mol⁻¹) and α-glucosidase (–20.41 and –20.71 kcal·mol⁻¹), respectively. DFT analysis also yielded more insight into their electronic properties, reactivity, and stability, further establishing their enzyme inhibition activity. These findings introduce M. piperita EO as a natural agent with α-amylase and α-glucosidase inhibition potential for the management of diabetes and glycemia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Structure
Journal of Molecular Structure 化学-物理化学
CiteScore
7.10
自引率
15.80%
发文量
2384
审稿时长
45 days
期刊介绍: The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including: • Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.) • Chemical intermediates • Molecules in excited states • Biological molecules • Polymers. The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example: • Infrared spectroscopy (mid, far, near) • Raman spectroscopy and non-linear Raman methods (CARS, etc.) • Electronic absorption spectroscopy • Optical rotatory dispersion and circular dichroism • Fluorescence and phosphorescence techniques • Electron spectroscopies (PES, XPS), EXAFS, etc. • Microwave spectroscopy • Electron diffraction • NMR and ESR spectroscopies • Mössbauer spectroscopy • X-ray crystallography • Charge Density Analyses • Computational Studies (supplementing experimental methods) We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信