下0权Ricci曲率界下加权流形的几何分析

IF 1.3 2区 数学 Q1 MATHEMATICS
Yasuaki Fujitani , Yohei Sakurai
{"title":"下0权Ricci曲率界下加权流形的几何分析","authors":"Yasuaki Fujitani ,&nbsp;Yohei Sakurai","doi":"10.1016/j.na.2025.113965","DOIUrl":null,"url":null,"abstract":"<div><div>We develop geometric analysis on weighted Riemannian manifolds under lower 0-weighted Ricci curvature bounds. Under such curvature bounds, we prove a first non-zero Steklov eigenvalue estimate of Wang–Xia type on compact weighted manifolds with boundary, and a first non-zero eigenvalue estimate of Choi–Wang type on closed weighted minimal hypersurfaces. We also produce an ABP estimate and a Sobolev inequality of Brendle type.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"263 ","pages":"Article 113965"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric analysis on weighted manifolds under lower 0-weighted Ricci curvature bounds\",\"authors\":\"Yasuaki Fujitani ,&nbsp;Yohei Sakurai\",\"doi\":\"10.1016/j.na.2025.113965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop geometric analysis on weighted Riemannian manifolds under lower 0-weighted Ricci curvature bounds. Under such curvature bounds, we prove a first non-zero Steklov eigenvalue estimate of Wang–Xia type on compact weighted manifolds with boundary, and a first non-zero eigenvalue estimate of Choi–Wang type on closed weighted minimal hypersurfaces. We also produce an ABP estimate and a Sobolev inequality of Brendle type.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"263 \",\"pages\":\"Article 113965\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25002172\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25002172","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了下0权Ricci曲率界下加权黎曼流形的几何分析。在这样的曲率边界下,证明了紧加权流形上Wang-Xia型的第一个非零Steklov特征值估计,以及封闭加权极小超曲面上Choi-Wang型的第一个非零特征值估计。我们也得到了一个ABP估计和一个Brendle型的Sobolev不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric analysis on weighted manifolds under lower 0-weighted Ricci curvature bounds
We develop geometric analysis on weighted Riemannian manifolds under lower 0-weighted Ricci curvature bounds. Under such curvature bounds, we prove a first non-zero Steklov eigenvalue estimate of Wang–Xia type on compact weighted manifolds with boundary, and a first non-zero eigenvalue estimate of Choi–Wang type on closed weighted minimal hypersurfaces. We also produce an ABP estimate and a Sobolev inequality of Brendle type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信