Γ-convergence的高阶相变模型

IF 1.3 2区 数学 Q1 MATHEMATICS
Denis Brazke , Gianna Götzmann , Hans Knüpfer
{"title":"Γ-convergence的高阶相变模型","authors":"Denis Brazke ,&nbsp;Gianna Götzmann ,&nbsp;Hans Knüpfer","doi":"10.1016/j.na.2025.113971","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the asymptotic behavior as <span><math><mrow><mi>ɛ</mi><mo>→</mo><mn>0</mn></mrow></math></span> of singularly perturbed phase transition models of order <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, given by <span><span><span><math><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mi>ɛ</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>n</mi></mrow></msubsup><mrow><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mo>≔</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>I</mi></mrow></msub><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ɛ</mi></mrow></mfrac><mi>W</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>λ</mi><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msup><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is fixed, <span><math><mrow><mi>I</mi><mo>⊂</mo><mi>R</mi></mrow></math></span> is an open bounded interval, and <span><math><mrow><mi>W</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> is a suitable double-well potential. We find that there exists a positive critical parameter depending on <span><math><mi>W</mi></math></span> and <span><math><mi>n</mi></math></span>, such that the <span><math><mi>Γ</mi></math></span>-limit of <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>ɛ</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span> with respect to the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-topology is given by a sharp interface functional in the subcritical regime. The cornerstone for the corresponding compactness property is a novel nonlinear interpolation inequality involving higher-order derivatives, which is based on Gagliardo–Nirenberg type inequalities.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"263 ","pages":"Article 113971"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Γ-convergence of higher-order phase transition models\",\"authors\":\"Denis Brazke ,&nbsp;Gianna Götzmann ,&nbsp;Hans Knüpfer\",\"doi\":\"10.1016/j.na.2025.113971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the asymptotic behavior as <span><math><mrow><mi>ɛ</mi><mo>→</mo><mn>0</mn></mrow></math></span> of singularly perturbed phase transition models of order <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, given by <span><span><span><math><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mi>ɛ</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>n</mi></mrow></msubsup><mrow><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mo>≔</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>I</mi></mrow></msub><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ɛ</mi></mrow></mfrac><mi>W</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>λ</mi><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msup><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is fixed, <span><math><mrow><mi>I</mi><mo>⊂</mo><mi>R</mi></mrow></math></span> is an open bounded interval, and <span><math><mrow><mi>W</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> is a suitable double-well potential. We find that there exists a positive critical parameter depending on <span><math><mi>W</mi></math></span> and <span><math><mi>n</mi></math></span>, such that the <span><math><mi>Γ</mi></math></span>-limit of <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>ɛ</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span> with respect to the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-topology is given by a sharp interface functional in the subcritical regime. The cornerstone for the corresponding compactness property is a novel nonlinear interpolation inequality involving higher-order derivatives, which is based on Gagliardo–Nirenberg type inequalities.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"263 \",\"pages\":\"Article 113971\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25002238\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25002238","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了n≥2阶奇异摄动相变模型的渐近性,其中λ λ,n[u]是∫I1 ^ W(u)−λ ^ 2n−3(u(n−1))2+ ^ 2n−1(u(n))2dx,u∈Wn,2(I),其中λ ^ gt;0是固定的,I∧R是一个开有界区间,W∈C0(R)是一个合适的双阱势。我们发现存在一个依赖于W和n的正临界参数,使得G λ,n关于l1拓扑的Γ-limit由亚临界区中的锐界面泛函给出。该紧性的基础是基于Gagliardo-Nirenberg型不等式的一种涉及高阶导数的非线性插值不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Γ-convergence of higher-order phase transition models
We investigate the asymptotic behavior as ɛ0 of singularly perturbed phase transition models of order n2, given by Gɛλ,n[u]I1ɛW(u)λɛ2n3(u(n1))2+ɛ2n1(u(n))2dx,uWn,2(I),where λ>0 is fixed, IR is an open bounded interval, and WC0(R) is a suitable double-well potential. We find that there exists a positive critical parameter depending on W and n, such that the Γ-limit of Gɛλ,n with respect to the L1-topology is given by a sharp interface functional in the subcritical regime. The cornerstone for the corresponding compactness property is a novel nonlinear interpolation inequality involving higher-order derivatives, which is based on Gagliardo–Nirenberg type inequalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信