{"title":"Γ-convergence的高阶相变模型","authors":"Denis Brazke , Gianna Götzmann , Hans Knüpfer","doi":"10.1016/j.na.2025.113971","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the asymptotic behavior as <span><math><mrow><mi>ɛ</mi><mo>→</mo><mn>0</mn></mrow></math></span> of singularly perturbed phase transition models of order <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, given by <span><span><span><math><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mi>ɛ</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>n</mi></mrow></msubsup><mrow><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mo>≔</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>I</mi></mrow></msub><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ɛ</mi></mrow></mfrac><mi>W</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>λ</mi><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msup><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>λ</mi><mo>></mo><mn>0</mn></mrow></math></span> is fixed, <span><math><mrow><mi>I</mi><mo>⊂</mo><mi>R</mi></mrow></math></span> is an open bounded interval, and <span><math><mrow><mi>W</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> is a suitable double-well potential. We find that there exists a positive critical parameter depending on <span><math><mi>W</mi></math></span> and <span><math><mi>n</mi></math></span>, such that the <span><math><mi>Γ</mi></math></span>-limit of <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>ɛ</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span> with respect to the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-topology is given by a sharp interface functional in the subcritical regime. The cornerstone for the corresponding compactness property is a novel nonlinear interpolation inequality involving higher-order derivatives, which is based on Gagliardo–Nirenberg type inequalities.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"263 ","pages":"Article 113971"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Γ-convergence of higher-order phase transition models\",\"authors\":\"Denis Brazke , Gianna Götzmann , Hans Knüpfer\",\"doi\":\"10.1016/j.na.2025.113971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the asymptotic behavior as <span><math><mrow><mi>ɛ</mi><mo>→</mo><mn>0</mn></mrow></math></span> of singularly perturbed phase transition models of order <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, given by <span><span><span><math><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mi>ɛ</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>n</mi></mrow></msubsup><mrow><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mo>≔</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>I</mi></mrow></msub><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ɛ</mi></mrow></mfrac><mi>W</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>λ</mi><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msup><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>λ</mi><mo>></mo><mn>0</mn></mrow></math></span> is fixed, <span><math><mrow><mi>I</mi><mo>⊂</mo><mi>R</mi></mrow></math></span> is an open bounded interval, and <span><math><mrow><mi>W</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> is a suitable double-well potential. We find that there exists a positive critical parameter depending on <span><math><mi>W</mi></math></span> and <span><math><mi>n</mi></math></span>, such that the <span><math><mi>Γ</mi></math></span>-limit of <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>ɛ</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span> with respect to the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-topology is given by a sharp interface functional in the subcritical regime. The cornerstone for the corresponding compactness property is a novel nonlinear interpolation inequality involving higher-order derivatives, which is based on Gagliardo–Nirenberg type inequalities.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"263 \",\"pages\":\"Article 113971\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25002238\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25002238","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Γ-convergence of higher-order phase transition models
We investigate the asymptotic behavior as of singularly perturbed phase transition models of order , given by where is fixed, is an open bounded interval, and is a suitable double-well potential. We find that there exists a positive critical parameter depending on and , such that the -limit of with respect to the -topology is given by a sharp interface functional in the subcritical regime. The cornerstone for the corresponding compactness property is a novel nonlinear interpolation inequality involving higher-order derivatives, which is based on Gagliardo–Nirenberg type inequalities.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.