带阻尼项的Aw-Rascle交通模型黎曼解极限下三角洲激波的形成

IF 1.3 2区 数学 Q1 MATHEMATICS
Jie Cheng , Tianrui Bai , Fangqi Chen
{"title":"带阻尼项的Aw-Rascle交通模型黎曼解极限下三角洲激波的形成","authors":"Jie Cheng ,&nbsp;Tianrui Bai ,&nbsp;Fangqi Chen","doi":"10.1016/j.na.2025.113969","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the Riemann problem of the Aw–Rascle traffic model with a damping term and the formation of delta shock waves in the limit of the Riemann solutions as <span><math><mrow><mi>γ</mi><mo>→</mo><mn>1</mn></mrow></math></span>. By introducing a new variable and employing generalized characteristic analysis methods, we construct solutions to the Riemann problem of the inhomogeneous Aw–Rascle traffic model. Specially, for the case <span><math><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>u</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>&lt;</mo><msub><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></math></span>, we prove the existence of a critical value <span><math><msub><mrow><mover><mrow><mi>γ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>0</mn></mrow></msub></math></span> for <span><math><mi>γ</mi></math></span> such that when <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>γ</mi><mo>&lt;</mo><msub><mrow><mover><mrow><mi>γ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, the Riemann solutions contain no vacuum states; otherwise, a vacuum state emerges. Furthermore, we demonstrate that as <span><math><mrow><mi>γ</mi><mo>→</mo><mn>1</mn></mrow></math></span>, the limit of the Riemann solutions with vacuum states aligns with the Riemann solutions to the inhomogeneous transport model under the same initial conditions, while the limit of solutions with shock waves converges to a curved delta shock solution. Notably, the weights supported on the delta shock solution differ from the Riemann solutions to the inhomogeneous transport model due to the influence of the damping term.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"263 ","pages":"Article 113969"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of delta shock waves in the limit of Riemann solutions to the Aw–Rascle traffic model with a damping term\",\"authors\":\"Jie Cheng ,&nbsp;Tianrui Bai ,&nbsp;Fangqi Chen\",\"doi\":\"10.1016/j.na.2025.113969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider the Riemann problem of the Aw–Rascle traffic model with a damping term and the formation of delta shock waves in the limit of the Riemann solutions as <span><math><mrow><mi>γ</mi><mo>→</mo><mn>1</mn></mrow></math></span>. By introducing a new variable and employing generalized characteristic analysis methods, we construct solutions to the Riemann problem of the inhomogeneous Aw–Rascle traffic model. Specially, for the case <span><math><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>u</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>&lt;</mo><msub><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></math></span>, we prove the existence of a critical value <span><math><msub><mrow><mover><mrow><mi>γ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>0</mn></mrow></msub></math></span> for <span><math><mi>γ</mi></math></span> such that when <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>γ</mi><mo>&lt;</mo><msub><mrow><mover><mrow><mi>γ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, the Riemann solutions contain no vacuum states; otherwise, a vacuum state emerges. Furthermore, we demonstrate that as <span><math><mrow><mi>γ</mi><mo>→</mo><mn>1</mn></mrow></math></span>, the limit of the Riemann solutions with vacuum states aligns with the Riemann solutions to the inhomogeneous transport model under the same initial conditions, while the limit of solutions with shock waves converges to a curved delta shock solution. Notably, the weights supported on the delta shock solution differ from the Riemann solutions to the inhomogeneous transport model due to the influence of the damping term.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"263 \",\"pages\":\"Article 113969\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25002214\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25002214","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了带阻尼项的Aw-Rascle交通模型的黎曼问题,以及黎曼解极限为γ→1时δ激波的形成。通过引入一个新的变量,利用广义特征分析方法,构造了非齐次交通模型的Riemann问题的解。特别地,对于0<;u−<;u+的情况,我们证明了γ的一个临界值γ¯0的存在性,使得当0<;γ<;γ¯0时,黎曼解不包含真空态;否则,出现真空状态。进一步证明,当γ→1时,具有真空态的黎曼解的极限与非均匀输运模型的黎曼解在相同初始条件下对准,而具有激波的黎曼解的极限收敛于弯曲的δ激波解。值得注意的是,由于阻尼项的影响,delta激波解所支持的权重与非均匀输运模型的黎曼解不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formation of delta shock waves in the limit of Riemann solutions to the Aw–Rascle traffic model with a damping term
In this paper, we consider the Riemann problem of the Aw–Rascle traffic model with a damping term and the formation of delta shock waves in the limit of the Riemann solutions as γ1. By introducing a new variable and employing generalized characteristic analysis methods, we construct solutions to the Riemann problem of the inhomogeneous Aw–Rascle traffic model. Specially, for the case 0<u<u+, we prove the existence of a critical value γ¯0 for γ such that when 0<γ<γ¯0, the Riemann solutions contain no vacuum states; otherwise, a vacuum state emerges. Furthermore, we demonstrate that as γ1, the limit of the Riemann solutions with vacuum states aligns with the Riemann solutions to the inhomogeneous transport model under the same initial conditions, while the limit of solutions with shock waves converges to a curved delta shock solution. Notably, the weights supported on the delta shock solution differ from the Riemann solutions to the inhomogeneous transport model due to the influence of the damping term.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信