具有无界阻尼的一维阻尼波动方程的解析估计

IF 1.3 2区 数学 Q1 MATHEMATICS
Antonio Arnal
{"title":"具有无界阻尼的一维阻尼波动方程的解析估计","authors":"Antonio Arnal","doi":"10.1016/j.na.2025.113978","DOIUrl":null,"url":null,"abstract":"<div><div>We study the generator <span><math><mi>G</mi></math></span> of the one-dimensional damped wave equation with unbounded damping at infinity. We show that the norm of the corresponding resolvent operator, <span><math><mrow><mo>‖</mo><msup><mrow><mrow><mo>(</mo><mi>G</mi><mo>−</mo><mi>λ</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>‖</mo></mrow></math></span>, is approximately constant as <span><math><mrow><mrow><mo>|</mo><mi>λ</mi><mo>|</mo></mrow><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></math></span> on vertical strips of bounded width contained in the closure of the left-hand side complex semi-plane, <span><math><mrow><msub><mrow><mover><mrow><mi>ℂ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mo>−</mo></mrow></msub><mo>≔</mo><mrow><mo>{</mo><mi>λ</mi><mo>∈</mo><mi>ℂ</mi><mo>:</mo><mo>Re</mo><mi>λ</mi><mo>≤</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>. Our proof rests on a precise asymptotic analysis of the norm of the inverse of <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span>, the quadratic operator associated with <span><math><mi>G</mi></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"263 ","pages":"Article 113978"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resolvent estimates for the one-dimensional damped wave equation with unbounded damping\",\"authors\":\"Antonio Arnal\",\"doi\":\"10.1016/j.na.2025.113978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the generator <span><math><mi>G</mi></math></span> of the one-dimensional damped wave equation with unbounded damping at infinity. We show that the norm of the corresponding resolvent operator, <span><math><mrow><mo>‖</mo><msup><mrow><mrow><mo>(</mo><mi>G</mi><mo>−</mo><mi>λ</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>‖</mo></mrow></math></span>, is approximately constant as <span><math><mrow><mrow><mo>|</mo><mi>λ</mi><mo>|</mo></mrow><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></math></span> on vertical strips of bounded width contained in the closure of the left-hand side complex semi-plane, <span><math><mrow><msub><mrow><mover><mrow><mi>ℂ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mo>−</mo></mrow></msub><mo>≔</mo><mrow><mo>{</mo><mi>λ</mi><mo>∈</mo><mi>ℂ</mi><mo>:</mo><mo>Re</mo><mi>λ</mi><mo>≤</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>. Our proof rests on a precise asymptotic analysis of the norm of the inverse of <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span>, the quadratic operator associated with <span><math><mi>G</mi></math></span>.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"263 \",\"pages\":\"Article 113978\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25002305\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25002305","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了无穷远处具有无界阻尼的一维阻尼波动方程的产生器G。证明了对应的解析算子‖(G−λ)−1‖在左手边复半平面的闭包中包含的有界宽度的垂直线上,其范数近似为|λ|→+∞。我们的证明依赖于T(λ)的逆模的精确渐近分析,即与G相关的二次算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resolvent estimates for the one-dimensional damped wave equation with unbounded damping
We study the generator G of the one-dimensional damped wave equation with unbounded damping at infinity. We show that the norm of the corresponding resolvent operator, (Gλ)1, is approximately constant as |λ|+ on vertical strips of bounded width contained in the closure of the left-hand side complex semi-plane, ¯{λ:Reλ0}. Our proof rests on a precise asymptotic analysis of the norm of the inverse of T(λ), the quadratic operator associated with G.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信