规定圈数和阿诺德不变量的最优平面浸入

IF 1.3 2区 数学 Q1 MATHEMATICS
Anna Lagemann, Heiko von der Mosel
{"title":"规定圈数和阿诺德不变量的最优平面浸入","authors":"Anna Lagemann,&nbsp;Heiko von der Mosel","doi":"10.1016/j.na.2025.113942","DOIUrl":null,"url":null,"abstract":"<div><div>Vladimir Arnold defined three invariants for generic planar immersions, i.e. planar curves whose self-intersections are all transverse double points. We use a variational approach to study these invariants by investigating a suitably truncated knot energy, the tangent-point energy. We prove existence of energy minimizers for each truncation parameter <span><math><mrow><mi>δ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> in a class of immersions with prescribed winding number and Arnold invariants, and establish Gamma convergence of the truncated tangent-point energies to a limiting renormalized tangent-point energy as <span><math><mrow><mi>δ</mi><mo>→</mo><mn>0</mn></mrow></math></span>. Moreover, we show that any sequence of minimizers subconverges in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>, and the corresponding limit curve has the same topological invariants, self-intersects exclusively at right angles, and minimizes the renormalized tangent-point energy among all curves with right self-intersection angles. In addition, the limit curve is an almost-minimizer for all of the original truncated tangent-point energies as long as the truncation parameter <span><math><mi>δ</mi></math></span> is sufficiently small. Therefore, this limit curve serves as an “optimal” curve in the class of generic planar immersions with prescribed winding number and Arnold invariants.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"263 ","pages":"Article 113942"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal planar immersions of prescribed winding number and Arnold invariants\",\"authors\":\"Anna Lagemann,&nbsp;Heiko von der Mosel\",\"doi\":\"10.1016/j.na.2025.113942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vladimir Arnold defined three invariants for generic planar immersions, i.e. planar curves whose self-intersections are all transverse double points. We use a variational approach to study these invariants by investigating a suitably truncated knot energy, the tangent-point energy. We prove existence of energy minimizers for each truncation parameter <span><math><mrow><mi>δ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> in a class of immersions with prescribed winding number and Arnold invariants, and establish Gamma convergence of the truncated tangent-point energies to a limiting renormalized tangent-point energy as <span><math><mrow><mi>δ</mi><mo>→</mo><mn>0</mn></mrow></math></span>. Moreover, we show that any sequence of minimizers subconverges in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>, and the corresponding limit curve has the same topological invariants, self-intersects exclusively at right angles, and minimizes the renormalized tangent-point energy among all curves with right self-intersection angles. In addition, the limit curve is an almost-minimizer for all of the original truncated tangent-point energies as long as the truncation parameter <span><math><mi>δ</mi></math></span> is sufficiently small. Therefore, this limit curve serves as an “optimal” curve in the class of generic planar immersions with prescribed winding number and Arnold invariants.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"263 \",\"pages\":\"Article 113942\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001944\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001944","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Vladimir Arnold定义了一般平面浸入式的三个不变量,即自交均为横向双点的平面曲线。我们使用变分的方法来研究这些不变量,通过研究一个适当截断的结能量,切点能量。在给定圈数和Arnold不变量的浸入式中,证明了每一个截断参数δ>;0的能量极小值的存在性,并建立了截断的切点能量的伽玛收敛到一个极限重归一化切点能量为δ→0。此外,我们还证明了任何最小值序列在C1中都是子收敛的,并且相应的极限曲线具有相同的拓扑不变量,在直角处完全自交,并且在所有自交角为直角的曲线中极小化了的切点能量。此外,只要截断参数δ足够小,对于所有原始截断的切点能量,极限曲线几乎是最小的。因此,该极限曲线可作为具有规定圈数和阿诺德不变量的一般平面浸没的一类“最优”曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal planar immersions of prescribed winding number and Arnold invariants
Vladimir Arnold defined three invariants for generic planar immersions, i.e. planar curves whose self-intersections are all transverse double points. We use a variational approach to study these invariants by investigating a suitably truncated knot energy, the tangent-point energy. We prove existence of energy minimizers for each truncation parameter δ>0 in a class of immersions with prescribed winding number and Arnold invariants, and establish Gamma convergence of the truncated tangent-point energies to a limiting renormalized tangent-point energy as δ0. Moreover, we show that any sequence of minimizers subconverges in C1, and the corresponding limit curve has the same topological invariants, self-intersects exclusively at right angles, and minimizes the renormalized tangent-point energy among all curves with right self-intersection angles. In addition, the limit curve is an almost-minimizer for all of the original truncated tangent-point energies as long as the truncation parameter δ is sufficiently small. Therefore, this limit curve serves as an “optimal” curve in the class of generic planar immersions with prescribed winding number and Arnold invariants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信