关于致密双星中超新星形成奇异夸克星的研究

IF 10.5 4区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
L.M. Becerra , F. Cipolletta , A. Drago , M. Guerrini , A. Lavagno , G. Pagliara , J.A. Rueda
{"title":"关于致密双星中超新星形成奇异夸克星的研究","authors":"L.M. Becerra ,&nbsp;F. Cipolletta ,&nbsp;A. Drago ,&nbsp;M. Guerrini ,&nbsp;A. Lavagno ,&nbsp;G. Pagliara ,&nbsp;J.A. Rueda","doi":"10.1016/j.jheap.2025.100491","DOIUrl":null,"url":null,"abstract":"<div><div>Strange quark stars (SQSs), namely compact stars entirely composed of deconfined quark matter, are characterized by similar masses and compactness to neutron stars (NSs) and have been theoretically proposed to exist in the Universe since the 1970s. However, multiwavelength observations of compact stars in the last 50 years have not yet led to an unambiguous SQS identification. This article explores whether SQSs could form in the supernova (SN) explosion of an evolved star (e.g., carbon-oxygen, or Wolf-Rayet) occurring in a binary with the companion being a neutron star (NS). The collapse of the iron core of the evolved star generates a newborn NS and the SN explosion. Part of the ejected matter accretes onto the NS companion as well as onto the newborn NS via matter fallback. The accretion occurs at hypercritical (highly super-Eddington) rates, transferring mass and angular momentum to the stars. We present numerical simulations of this scenario and demonstrate that the density increase in the NS interiors during the accretion process may induce quark matter deconfinement, suggesting the possibility of SQS formation. We discuss the astrophysical conditions under which such a transition may occur and possible consequences.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"50 ","pages":"Article 100491"},"PeriodicalIF":10.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the formation of strange quark stars from supernova in compact binaries\",\"authors\":\"L.M. Becerra ,&nbsp;F. Cipolletta ,&nbsp;A. Drago ,&nbsp;M. Guerrini ,&nbsp;A. Lavagno ,&nbsp;G. Pagliara ,&nbsp;J.A. Rueda\",\"doi\":\"10.1016/j.jheap.2025.100491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Strange quark stars (SQSs), namely compact stars entirely composed of deconfined quark matter, are characterized by similar masses and compactness to neutron stars (NSs) and have been theoretically proposed to exist in the Universe since the 1970s. However, multiwavelength observations of compact stars in the last 50 years have not yet led to an unambiguous SQS identification. This article explores whether SQSs could form in the supernova (SN) explosion of an evolved star (e.g., carbon-oxygen, or Wolf-Rayet) occurring in a binary with the companion being a neutron star (NS). The collapse of the iron core of the evolved star generates a newborn NS and the SN explosion. Part of the ejected matter accretes onto the NS companion as well as onto the newborn NS via matter fallback. The accretion occurs at hypercritical (highly super-Eddington) rates, transferring mass and angular momentum to the stars. We present numerical simulations of this scenario and demonstrate that the density increase in the NS interiors during the accretion process may induce quark matter deconfinement, suggesting the possibility of SQS formation. We discuss the astrophysical conditions under which such a transition may occur and possible consequences.</div></div>\",\"PeriodicalId\":54265,\"journal\":{\"name\":\"Journal of High Energy Astrophysics\",\"volume\":\"50 \",\"pages\":\"Article 100491\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214404825001727\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404825001727","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

奇异夸克恒星(SQSs),即完全由限定夸克物质组成的致密恒星,具有与中子星(NSs)相似的质量和致密性,自20世纪70年代以来,从理论上提出在宇宙中存在。然而,在过去的50年里,对致密恒星的多波长观测尚未导致明确的SQS识别。本文探讨了在伴星为中子星(NS)的双星中,一颗演化恒星(例如碳氧星或沃尔夫-拉叶星)的超新星(SN)爆炸中是否会形成SQSs。演化恒星铁核的坍缩产生了新生的NS和SN爆炸。部分抛射的物质通过物质回退聚集到伴神经系统和新生神经系统上。吸积以超临界(高度超爱丁顿)速率发生,将质量和角动量传递给恒星。我们对这种情况进行了数值模拟,并证明在吸积过程中,NS内部密度的增加可能导致夸克物质的定义,这表明SQS形成的可能性。我们讨论了这种转变可能发生的天体物理条件和可能的后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the formation of strange quark stars from supernova in compact binaries
Strange quark stars (SQSs), namely compact stars entirely composed of deconfined quark matter, are characterized by similar masses and compactness to neutron stars (NSs) and have been theoretically proposed to exist in the Universe since the 1970s. However, multiwavelength observations of compact stars in the last 50 years have not yet led to an unambiguous SQS identification. This article explores whether SQSs could form in the supernova (SN) explosion of an evolved star (e.g., carbon-oxygen, or Wolf-Rayet) occurring in a binary with the companion being a neutron star (NS). The collapse of the iron core of the evolved star generates a newborn NS and the SN explosion. Part of the ejected matter accretes onto the NS companion as well as onto the newborn NS via matter fallback. The accretion occurs at hypercritical (highly super-Eddington) rates, transferring mass and angular momentum to the stars. We present numerical simulations of this scenario and demonstrate that the density increase in the NS interiors during the accretion process may induce quark matter deconfinement, suggesting the possibility of SQS formation. We discuss the astrophysical conditions under which such a transition may occur and possible consequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Astrophysics
Journal of High Energy Astrophysics Earth and Planetary Sciences-Space and Planetary Science
CiteScore
9.70
自引率
5.30%
发文量
38
审稿时长
65 days
期刊介绍: The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信