MSTGT:面向视觉跟踪的多尺度时空制导

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Fei Pan , Lianyu Zhao , Chenglin Wang , Chunlei Du , Xiaolei Zhao
{"title":"MSTGT:面向视觉跟踪的多尺度时空制导","authors":"Fei Pan ,&nbsp;Lianyu Zhao ,&nbsp;Chenglin Wang ,&nbsp;Chunlei Du ,&nbsp;Xiaolei Zhao","doi":"10.1016/j.neucom.2025.131583","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing the challenge of target tracking in complex scenarios with limited data samples is a highly significant research endeavor. Nevertheless, most trackers primarily concentrate on intricate model architectures or template updating strategies, overlooking the depth of training sample exploitation and the efficient utilization of spatio-temporal target information. To alleviate the above problem, we propose a novel visual tracking framework tailored for complex scenarios, named MSTGT, which integrates mixed data sampling with multi-scale spatio-temporal guidance. Specifically, we innovatively employ a video sequence sampling and feature mixing strategy to simulate complex scenarios, enhancing the representation of video sequences. Concurrently, our multi-scale visual cue encoder harnesses multi-scale target information to fortify feature representation and cue construction. Furthermore, our multi-scale spatio-temporal guidance encoder, a groundbreaking approach, seamlessly integrates spatial and temporal dimensions with multi-scale information, precisely guiding the prediction of target trajectories. This not only bolsters the handling of intricate motion patterns but also circumvents the need for intricate online updating strategies. MSTGT achieves SOTA performance on six benchmarks, while running at real-time speed. Code is available at <span><span>https://github.com/capf-2011/MSTGT</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"657 ","pages":"Article 131583"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MSTGT: Multi-scale spatio-temporal guidance for visual tracking\",\"authors\":\"Fei Pan ,&nbsp;Lianyu Zhao ,&nbsp;Chenglin Wang ,&nbsp;Chunlei Du ,&nbsp;Xiaolei Zhao\",\"doi\":\"10.1016/j.neucom.2025.131583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Addressing the challenge of target tracking in complex scenarios with limited data samples is a highly significant research endeavor. Nevertheless, most trackers primarily concentrate on intricate model architectures or template updating strategies, overlooking the depth of training sample exploitation and the efficient utilization of spatio-temporal target information. To alleviate the above problem, we propose a novel visual tracking framework tailored for complex scenarios, named MSTGT, which integrates mixed data sampling with multi-scale spatio-temporal guidance. Specifically, we innovatively employ a video sequence sampling and feature mixing strategy to simulate complex scenarios, enhancing the representation of video sequences. Concurrently, our multi-scale visual cue encoder harnesses multi-scale target information to fortify feature representation and cue construction. Furthermore, our multi-scale spatio-temporal guidance encoder, a groundbreaking approach, seamlessly integrates spatial and temporal dimensions with multi-scale information, precisely guiding the prediction of target trajectories. This not only bolsters the handling of intricate motion patterns but also circumvents the need for intricate online updating strategies. MSTGT achieves SOTA performance on six benchmarks, while running at real-time speed. Code is available at <span><span>https://github.com/capf-2011/MSTGT</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"657 \",\"pages\":\"Article 131583\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225022556\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225022556","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

解决有限数据样本下复杂场景下的目标跟踪问题是一个非常重要的研究课题。然而,大多数跟踪器主要集中在复杂的模型架构或模板更新策略上,忽视了训练样本开发的深度和目标时空信息的有效利用。为了解决上述问题,我们提出了一种新的针对复杂场景的视觉跟踪框架,称为MSTGT,该框架将混合数据采样与多尺度时空引导相结合。具体而言,我们创新地采用视频序列采样和特征混合策略来模拟复杂场景,增强视频序列的表示。同时,我们的多尺度视觉线索编码器利用多尺度目标信息来加强特征表示和线索构建。此外,我们的多尺度时空制导编码器是一种开创性的方法,它将空间和时间维度与多尺度信息无缝集成,精确地指导目标轨迹的预测。这不仅支持处理复杂的运动模式,而且还规避了复杂的在线更新策略的需要。MSTGT在六个基准测试中达到SOTA性能,同时以实时速度运行。代码可从https://github.com/capf-2011/MSTGT获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MSTGT: Multi-scale spatio-temporal guidance for visual tracking
Addressing the challenge of target tracking in complex scenarios with limited data samples is a highly significant research endeavor. Nevertheless, most trackers primarily concentrate on intricate model architectures or template updating strategies, overlooking the depth of training sample exploitation and the efficient utilization of spatio-temporal target information. To alleviate the above problem, we propose a novel visual tracking framework tailored for complex scenarios, named MSTGT, which integrates mixed data sampling with multi-scale spatio-temporal guidance. Specifically, we innovatively employ a video sequence sampling and feature mixing strategy to simulate complex scenarios, enhancing the representation of video sequences. Concurrently, our multi-scale visual cue encoder harnesses multi-scale target information to fortify feature representation and cue construction. Furthermore, our multi-scale spatio-temporal guidance encoder, a groundbreaking approach, seamlessly integrates spatial and temporal dimensions with multi-scale information, precisely guiding the prediction of target trajectories. This not only bolsters the handling of intricate motion patterns but also circumvents the need for intricate online updating strategies. MSTGT achieves SOTA performance on six benchmarks, while running at real-time speed. Code is available at https://github.com/capf-2011/MSTGT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信