样本高效回溯时间差分深度强化学习

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qi Liu , Pengbin Chen , Ke Lin , Kaidong Zhao , Jinliang Ding , Yanjie Li
{"title":"样本高效回溯时间差分深度强化学习","authors":"Qi Liu ,&nbsp;Pengbin Chen ,&nbsp;Ke Lin ,&nbsp;Kaidong Zhao ,&nbsp;Jinliang Ding ,&nbsp;Yanjie Li","doi":"10.1016/j.knosys.2025.114613","DOIUrl":null,"url":null,"abstract":"<div><div>Deep reinforcement learning algorithms often require large amounts of training data, particularly in robotic control tasks. To address this limitation, we propose a sample-efficient backtrack temporal difference learning method that enhances target state-action (<span><math><mi>Q</mi></math></span>) value estimation. The proposed method dynamically prioritizes transitions based on their proximity to terminal states using backtrack sampling weights. This prioritization mechanism yields more accurate target <span><math><mi>Q</mi></math></span>-values, thereby improving the overall <span><math><mi>Q</mi></math></span>-value estimation precision. Furthermore, our analysis uncovers a novel link between curriculum learning and Bellman equation optimization. The proposed method is versatile, applicable to both discrete and continuous action spaces, and readily integrable with off-policy actor-critic algorithms. Extensive experiments show that the proposed method considerably reduces <span><math><mi>Q</mi></math></span>-value approximation errors and outperforms baselines across diverse benchmarks, achieving a 28 % performance improvement in four discrete action-space tasks and a 78 % gain in four continuous control tasks.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"330 ","pages":"Article 114613"},"PeriodicalIF":7.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sample-efficient backtrack temporal difference deep reinforcement learning\",\"authors\":\"Qi Liu ,&nbsp;Pengbin Chen ,&nbsp;Ke Lin ,&nbsp;Kaidong Zhao ,&nbsp;Jinliang Ding ,&nbsp;Yanjie Li\",\"doi\":\"10.1016/j.knosys.2025.114613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep reinforcement learning algorithms often require large amounts of training data, particularly in robotic control tasks. To address this limitation, we propose a sample-efficient backtrack temporal difference learning method that enhances target state-action (<span><math><mi>Q</mi></math></span>) value estimation. The proposed method dynamically prioritizes transitions based on their proximity to terminal states using backtrack sampling weights. This prioritization mechanism yields more accurate target <span><math><mi>Q</mi></math></span>-values, thereby improving the overall <span><math><mi>Q</mi></math></span>-value estimation precision. Furthermore, our analysis uncovers a novel link between curriculum learning and Bellman equation optimization. The proposed method is versatile, applicable to both discrete and continuous action spaces, and readily integrable with off-policy actor-critic algorithms. Extensive experiments show that the proposed method considerably reduces <span><math><mi>Q</mi></math></span>-value approximation errors and outperforms baselines across diverse benchmarks, achieving a 28 % performance improvement in four discrete action-space tasks and a 78 % gain in four continuous control tasks.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"330 \",\"pages\":\"Article 114613\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705125016521\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125016521","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

深度强化学习算法通常需要大量的训练数据,特别是在机器人控制任务中。为了解决这一限制,我们提出了一种样本高效的回溯时间差分学习方法,该方法增强了目标状态-行为(Q)值的估计。该方法利用回溯采样权值,根据过渡与终端状态的接近程度,对过渡进行动态优先排序。这种优先级机制产生更精确的目标q值,从而提高整体q值估计精度。此外,我们的分析揭示了课程学习与Bellman方程优化之间的新联系。该方法具有通用性,既适用于离散动作空间,也适用于连续动作空间,并且易于与非策略行为者批评算法集成。大量的实验表明,所提出的方法大大降低了q值近似误差,并且在不同的基准测试中优于基线,在四个离散的动作空间任务中实现了28%的性能提高,在四个连续控制任务中实现了78%的性能提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sample-efficient backtrack temporal difference deep reinforcement learning
Deep reinforcement learning algorithms often require large amounts of training data, particularly in robotic control tasks. To address this limitation, we propose a sample-efficient backtrack temporal difference learning method that enhances target state-action (Q) value estimation. The proposed method dynamically prioritizes transitions based on their proximity to terminal states using backtrack sampling weights. This prioritization mechanism yields more accurate target Q-values, thereby improving the overall Q-value estimation precision. Furthermore, our analysis uncovers a novel link between curriculum learning and Bellman equation optimization. The proposed method is versatile, applicable to both discrete and continuous action spaces, and readily integrable with off-policy actor-critic algorithms. Extensive experiments show that the proposed method considerably reduces Q-value approximation errors and outperforms baselines across diverse benchmarks, achieving a 28 % performance improvement in four discrete action-space tasks and a 78 % gain in four continuous control tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信