TreeQA:增强LLM-RAG与逻辑树推理可靠和可解释的多跳问题回答

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiangrui Zhang , Fuyong Zhao , Yutian Liu , Panfeng Chen , Yanhao Wang , Xiaohua Wang , Dan Ma , Huarong Xu , Mei Chen , Hui Li
{"title":"TreeQA:增强LLM-RAG与逻辑树推理可靠和可解释的多跳问题回答","authors":"Xiangrui Zhang ,&nbsp;Fuyong Zhao ,&nbsp;Yutian Liu ,&nbsp;Panfeng Chen ,&nbsp;Yanhao Wang ,&nbsp;Xiaohua Wang ,&nbsp;Dan Ma ,&nbsp;Huarong Xu ,&nbsp;Mei Chen ,&nbsp;Hui Li","doi":"10.1016/j.knosys.2025.114526","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-Hop Question Answering (MHQA), crucial for complex information retrieval, remains challenging for current Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems, which often suffer from hallucination, reliance on incomplete knowledge, and opaque reasoning processes. Existing RAG methods, while beneficial, still struggle with the intricacies of multi-step inference and ensuring verifiable accuracy. This research introduces TreeQA, a novel framework designed to significantly enhance the reliability and interpretability of LLM-RAG systems in MHQA tasks. TreeQA addresses these limitations by decomposing complex multi-hop questions into a hierarchical logic tree of simpler, verifiable sub-questions, integrating evidence from both structured knowledge bases (e.g., Wikidata) and unstructured text (e.g., Wikipedia), and employing an iterative, evidence-based validation and self-correction mechanism at each reasoning step to dynamically rectify errors and prevent their accumulation. Extensive experiments on four benchmark datasets (WebQSP, QALD-en, AdvHotpotQA, and 2WikiMultiHopQA) demonstrate TreeQA’s superior performance, achieving Hit@1 scores of 87 %, 57 %, 53 %, and 59 %, respectively, representing improvements of 4 %-12 % over state-of-the-art LLM-RAG methods. These findings highlight the significant impact of structured, verifiable reasoning pathways in developing more robust, accurate, and interpretable knowledge-intensive AI systems, thereby enhancing the practical utility of LLMs in complex reasoning scenarios. Our code is publicly available at <span><span>https://github.com/ACMISLab/TreeQA</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"330 ","pages":"Article 114526"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TreeQA: Enhanced LLM-RAG with logic tree reasoning for reliable and interpretable multi-hop question answering\",\"authors\":\"Xiangrui Zhang ,&nbsp;Fuyong Zhao ,&nbsp;Yutian Liu ,&nbsp;Panfeng Chen ,&nbsp;Yanhao Wang ,&nbsp;Xiaohua Wang ,&nbsp;Dan Ma ,&nbsp;Huarong Xu ,&nbsp;Mei Chen ,&nbsp;Hui Li\",\"doi\":\"10.1016/j.knosys.2025.114526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-Hop Question Answering (MHQA), crucial for complex information retrieval, remains challenging for current Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems, which often suffer from hallucination, reliance on incomplete knowledge, and opaque reasoning processes. Existing RAG methods, while beneficial, still struggle with the intricacies of multi-step inference and ensuring verifiable accuracy. This research introduces TreeQA, a novel framework designed to significantly enhance the reliability and interpretability of LLM-RAG systems in MHQA tasks. TreeQA addresses these limitations by decomposing complex multi-hop questions into a hierarchical logic tree of simpler, verifiable sub-questions, integrating evidence from both structured knowledge bases (e.g., Wikidata) and unstructured text (e.g., Wikipedia), and employing an iterative, evidence-based validation and self-correction mechanism at each reasoning step to dynamically rectify errors and prevent their accumulation. Extensive experiments on four benchmark datasets (WebQSP, QALD-en, AdvHotpotQA, and 2WikiMultiHopQA) demonstrate TreeQA’s superior performance, achieving Hit@1 scores of 87 %, 57 %, 53 %, and 59 %, respectively, representing improvements of 4 %-12 % over state-of-the-art LLM-RAG methods. These findings highlight the significant impact of structured, verifiable reasoning pathways in developing more robust, accurate, and interpretable knowledge-intensive AI systems, thereby enhancing the practical utility of LLMs in complex reasoning scenarios. Our code is publicly available at <span><span>https://github.com/ACMISLab/TreeQA</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"330 \",\"pages\":\"Article 114526\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705125015655\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125015655","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

多跳问答(MHQA)对于复杂信息检索至关重要,但对于当前的大型语言模型(llm)和检索增强生成(RAG)系统来说仍然具有挑战性,这些系统经常遭受幻觉、依赖不完整知识和不透明推理过程的困扰。现有的RAG方法虽然有益,但仍然与多步骤推理的复杂性和确保可验证的准确性作斗争。本研究引入了一种新的框架TreeQA,旨在显著提高LLM-RAG系统在MHQA任务中的可靠性和可解释性。TreeQA通过将复杂的多跳问题分解为更简单、可验证的子问题的分层逻辑树,整合来自结构化知识库(如维基数据)和非结构化文本(如维基百科)的证据,并在每个推理步骤中采用迭代的、基于证据的验证和自我纠正机制来动态纠正错误并防止其积累,从而解决了这些限制。在四个基准数据集(WebQSP、QALD-en、AdvHotpotQA和2WikiMultiHopQA)上进行的广泛实验证明了TreeQA的卓越性能,分别达到了Hit@1得分的87%、57%、53%和59%,比最先进的LLM-RAG方法提高了4% - 12%。这些发现强调了结构化、可验证的推理路径在开发更健壮、准确和可解释的知识密集型人工智能系统方面的重要影响,从而增强了法学硕士在复杂推理场景中的实际效用。我们的代码可以在https://github.com/ACMISLab/TreeQA上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TreeQA: Enhanced LLM-RAG with logic tree reasoning for reliable and interpretable multi-hop question answering
Multi-Hop Question Answering (MHQA), crucial for complex information retrieval, remains challenging for current Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems, which often suffer from hallucination, reliance on incomplete knowledge, and opaque reasoning processes. Existing RAG methods, while beneficial, still struggle with the intricacies of multi-step inference and ensuring verifiable accuracy. This research introduces TreeQA, a novel framework designed to significantly enhance the reliability and interpretability of LLM-RAG systems in MHQA tasks. TreeQA addresses these limitations by decomposing complex multi-hop questions into a hierarchical logic tree of simpler, verifiable sub-questions, integrating evidence from both structured knowledge bases (e.g., Wikidata) and unstructured text (e.g., Wikipedia), and employing an iterative, evidence-based validation and self-correction mechanism at each reasoning step to dynamically rectify errors and prevent their accumulation. Extensive experiments on four benchmark datasets (WebQSP, QALD-en, AdvHotpotQA, and 2WikiMultiHopQA) demonstrate TreeQA’s superior performance, achieving Hit@1 scores of 87 %, 57 %, 53 %, and 59 %, respectively, representing improvements of 4 %-12 % over state-of-the-art LLM-RAG methods. These findings highlight the significant impact of structured, verifiable reasoning pathways in developing more robust, accurate, and interpretable knowledge-intensive AI systems, thereby enhancing the practical utility of LLMs in complex reasoning scenarios. Our code is publicly available at https://github.com/ACMISLab/TreeQA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信