KAN-MoDTI:基于Kolmogorov-Arnold网络和多模态特征融合的药物靶标相互作用预测

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hui Liu , Haoxin Jia , Wenze Li , Wei Li , Yuting Yuan
{"title":"KAN-MoDTI:基于Kolmogorov-Arnold网络和多模态特征融合的药物靶标相互作用预测","authors":"Hui Liu ,&nbsp;Haoxin Jia ,&nbsp;Wenze Li ,&nbsp;Wei Li ,&nbsp;Yuting Yuan","doi":"10.1016/j.eswa.2025.129828","DOIUrl":null,"url":null,"abstract":"<div><div>Drug-target interaction (DTI) prediction is a crucial task in computational drug discovery and repurposing, as it accelerates candidate identification while reducing development costs. Despite the advancements in deep learning, existing methods still face challenges in effectively modeling multi-modal data, fusing heterogeneous features, and capturing complex nonlinear relationships. We propose KAN-MoDTI to tackle these challenges by integrating Kolmogorov-Arnold Networks (KAN) with multimodal feature fusion and adaptive gating mechanisms, effectively combining heterogeneous drug and target representations to better capture the complex interactions between them. In the feature encoding stage, we use a dual-branch approach: For drugs, we combine SMILES sequence embeddings with structural representations from a KAN-based graph encoder. For targets, we integrate N-gram sequence embeddings with biochemical descriptor features. In the feature fusion stage, we introduce the FeatureFusionKAN module, which uses a gating mechanism to assign adaptive weights and KAN to perform the integration of heterogeneous modal features. KAN is also utilized in the final prediction layer to enhance the model’s ability to accurately predict complex drug-target interactions. Comprehensive experiments on datasets such as DrugBank, BindingDB, and Human show that KAN-MoDTI consistently outperforms or matches recent state-of-the-art baselines across metrics like AUROC and AUPRC.The source code implementation can be found at: <span><span>https://github.com/jiahaoxin/KAN-MoDTI</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"298 ","pages":"Article 129828"},"PeriodicalIF":7.5000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KAN-MoDTI: Drug target interaction prediction based on Kolmogorov-Arnold network and multimodal feature fusion\",\"authors\":\"Hui Liu ,&nbsp;Haoxin Jia ,&nbsp;Wenze Li ,&nbsp;Wei Li ,&nbsp;Yuting Yuan\",\"doi\":\"10.1016/j.eswa.2025.129828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drug-target interaction (DTI) prediction is a crucial task in computational drug discovery and repurposing, as it accelerates candidate identification while reducing development costs. Despite the advancements in deep learning, existing methods still face challenges in effectively modeling multi-modal data, fusing heterogeneous features, and capturing complex nonlinear relationships. We propose KAN-MoDTI to tackle these challenges by integrating Kolmogorov-Arnold Networks (KAN) with multimodal feature fusion and adaptive gating mechanisms, effectively combining heterogeneous drug and target representations to better capture the complex interactions between them. In the feature encoding stage, we use a dual-branch approach: For drugs, we combine SMILES sequence embeddings with structural representations from a KAN-based graph encoder. For targets, we integrate N-gram sequence embeddings with biochemical descriptor features. In the feature fusion stage, we introduce the FeatureFusionKAN module, which uses a gating mechanism to assign adaptive weights and KAN to perform the integration of heterogeneous modal features. KAN is also utilized in the final prediction layer to enhance the model’s ability to accurately predict complex drug-target interactions. Comprehensive experiments on datasets such as DrugBank, BindingDB, and Human show that KAN-MoDTI consistently outperforms or matches recent state-of-the-art baselines across metrics like AUROC and AUPRC.The source code implementation can be found at: <span><span>https://github.com/jiahaoxin/KAN-MoDTI</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"298 \",\"pages\":\"Article 129828\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417425034438\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425034438","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

药物-靶标相互作用(DTI)预测是计算药物发现和再利用的关键任务,因为它加速了候选药物的识别,同时降低了开发成本。尽管深度学习取得了进步,但现有方法在有效建模多模态数据、融合异构特征和捕获复杂非线性关系方面仍然面临挑战。我们提出KAN- modti来解决这些挑战,通过将Kolmogorov-Arnold网络(KAN)与多模态特征融合和自适应门控机制相结合,有效地结合异质药物和靶标表征,以更好地捕获它们之间复杂的相互作用。在特征编码阶段,我们使用双分支方法:对于药物,我们将SMILES序列嵌入与基于kan的图编码器的结构表示结合起来。对于目标,我们将N-gram序列嵌入与生化描述符特征相结合。在特征融合阶段,我们引入了FeatureFusionKAN模块,该模块使用门控机制分配自适应权值,并使用KAN进行异构模态特征的集成。最后的预测层还使用了KAN,以提高模型准确预测复杂药物-靶标相互作用的能力。在DrugBank、BindingDB和Human等数据集上进行的综合实验表明,KAN-MoDTI在AUROC和AUPRC等指标上的表现始终优于或匹配最近最先进的基线。源代码实现可以在https://github.com/jiahaoxin/KAN-MoDTI找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KAN-MoDTI: Drug target interaction prediction based on Kolmogorov-Arnold network and multimodal feature fusion
Drug-target interaction (DTI) prediction is a crucial task in computational drug discovery and repurposing, as it accelerates candidate identification while reducing development costs. Despite the advancements in deep learning, existing methods still face challenges in effectively modeling multi-modal data, fusing heterogeneous features, and capturing complex nonlinear relationships. We propose KAN-MoDTI to tackle these challenges by integrating Kolmogorov-Arnold Networks (KAN) with multimodal feature fusion and adaptive gating mechanisms, effectively combining heterogeneous drug and target representations to better capture the complex interactions between them. In the feature encoding stage, we use a dual-branch approach: For drugs, we combine SMILES sequence embeddings with structural representations from a KAN-based graph encoder. For targets, we integrate N-gram sequence embeddings with biochemical descriptor features. In the feature fusion stage, we introduce the FeatureFusionKAN module, which uses a gating mechanism to assign adaptive weights and KAN to perform the integration of heterogeneous modal features. KAN is also utilized in the final prediction layer to enhance the model’s ability to accurately predict complex drug-target interactions. Comprehensive experiments on datasets such as DrugBank, BindingDB, and Human show that KAN-MoDTI consistently outperforms or matches recent state-of-the-art baselines across metrics like AUROC and AUPRC.The source code implementation can be found at: https://github.com/jiahaoxin/KAN-MoDTI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信