基于大规模多目标进化优化和博弈决策机制的容错任务卸载框架

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tingting Dong , Jinbu Wen , Fei Xue , Yuge Geng , Xingjuan Cai
{"title":"基于大规模多目标进化优化和博弈决策机制的容错任务卸载框架","authors":"Tingting Dong ,&nbsp;Jinbu Wen ,&nbsp;Fei Xue ,&nbsp;Yuge Geng ,&nbsp;Xingjuan Cai","doi":"10.1016/j.eswa.2025.129910","DOIUrl":null,"url":null,"abstract":"<div><div>Large-scale multi-access edge computing (MEC) optimization is challenging due to high-dimensional decision spaces, conflicting objectives, nonstationary conditions, and failure-prone infrastructure. This paper presents an adaptive Mahalanobis distance-based large-scale multi-objective evolutionary algorithm with knowledge transfer and a two-layer encoding (<strong>ALC-LSMOEA-KT</strong>). The task-offloading model optimizes latency, energy, load balance, and failure risk under communication and computation constraints. A two-layer sparse encoding separates variable activation from value search, and a phase-aware evolution with Mahalanobis-guided covariance adaptation exploits inter-variable correlations while preserving diversity. A Stackelberg-based fault-tolerant migration module reassigns disrupted tasks to sustain robustness. Experiments on scalable multi-objective optimization Problems(SMOP)/large-scale multi-objective optimization problem(LSMOP) benchmarks and a realistic MEC simulator with dynamic arrivals, bandwidth variation, and injected failures show consistent gains in inverted generational distance (IGD), solution diversity, and robustness. The results indicate a scalable and reliable approach to MEC optimization under high dimensionality and uncertainty.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"298 ","pages":"Article 129910"},"PeriodicalIF":7.5000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fault-tolerant task offloading framework via large-scale multi-objective evolutionary optimization and game-based decision mechanism\",\"authors\":\"Tingting Dong ,&nbsp;Jinbu Wen ,&nbsp;Fei Xue ,&nbsp;Yuge Geng ,&nbsp;Xingjuan Cai\",\"doi\":\"10.1016/j.eswa.2025.129910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large-scale multi-access edge computing (MEC) optimization is challenging due to high-dimensional decision spaces, conflicting objectives, nonstationary conditions, and failure-prone infrastructure. This paper presents an adaptive Mahalanobis distance-based large-scale multi-objective evolutionary algorithm with knowledge transfer and a two-layer encoding (<strong>ALC-LSMOEA-KT</strong>). The task-offloading model optimizes latency, energy, load balance, and failure risk under communication and computation constraints. A two-layer sparse encoding separates variable activation from value search, and a phase-aware evolution with Mahalanobis-guided covariance adaptation exploits inter-variable correlations while preserving diversity. A Stackelberg-based fault-tolerant migration module reassigns disrupted tasks to sustain robustness. Experiments on scalable multi-objective optimization Problems(SMOP)/large-scale multi-objective optimization problem(LSMOP) benchmarks and a realistic MEC simulator with dynamic arrivals, bandwidth variation, and injected failures show consistent gains in inverted generational distance (IGD), solution diversity, and robustness. The results indicate a scalable and reliable approach to MEC optimization under high dimensionality and uncertainty.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"298 \",\"pages\":\"Article 129910\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417425035250\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425035250","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于高维决策空间、目标冲突、非平稳条件和易发生故障的基础设施,大规模多访问边缘计算(MEC)优化具有挑战性。提出了一种基于知识转移和两层编码的自适应Mahalanobis距离的大规模多目标进化算法(ALC-LSMOEA-KT)。任务卸载模型在通信和计算约束下优化了延迟、能量、负载平衡和故障风险。两层稀疏编码将变量激活与值搜索分离开来,采用马氏引导协方差适应的相位感知进化在保持多样性的同时利用了变量间的相关性。基于stackelberg的容错迁移模块重新分配中断的任务以保持鲁棒性。在可扩展多目标优化问题(SMOP)/大规模多目标优化问题(LSMOP)基准测试和具有动态到达、带宽变化和注入故障的现实MEC模拟器上进行的实验表明,在倒代距离(IGD)、解决方案多样性和鲁棒性方面取得了一致的进展。结果表明,该方法具有可扩展性和可靠性,可用于高维、不确定条件下的MEC优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fault-tolerant task offloading framework via large-scale multi-objective evolutionary optimization and game-based decision mechanism
Large-scale multi-access edge computing (MEC) optimization is challenging due to high-dimensional decision spaces, conflicting objectives, nonstationary conditions, and failure-prone infrastructure. This paper presents an adaptive Mahalanobis distance-based large-scale multi-objective evolutionary algorithm with knowledge transfer and a two-layer encoding (ALC-LSMOEA-KT). The task-offloading model optimizes latency, energy, load balance, and failure risk under communication and computation constraints. A two-layer sparse encoding separates variable activation from value search, and a phase-aware evolution with Mahalanobis-guided covariance adaptation exploits inter-variable correlations while preserving diversity. A Stackelberg-based fault-tolerant migration module reassigns disrupted tasks to sustain robustness. Experiments on scalable multi-objective optimization Problems(SMOP)/large-scale multi-objective optimization problem(LSMOP) benchmarks and a realistic MEC simulator with dynamic arrivals, bandwidth variation, and injected failures show consistent gains in inverted generational distance (IGD), solution diversity, and robustness. The results indicate a scalable and reliable approach to MEC optimization under high dimensionality and uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信