温度对基于压力、电流驱动的电声吸收器阻抗控制的影响:使用粘弹性材料模型解决无源性损失问题

IF 4.9 2区 工程技术 Q1 ACOUSTICS
Leonardo Ferreira , Rafael de O. Teloli , Emanuele de Bono , Morvan Ouisse
{"title":"温度对基于压力、电流驱动的电声吸收器阻抗控制的影响:使用粘弹性材料模型解决无源性损失问题","authors":"Leonardo Ferreira ,&nbsp;Rafael de O. Teloli ,&nbsp;Emanuele de Bono ,&nbsp;Morvan Ouisse","doi":"10.1016/j.jsv.2025.119468","DOIUrl":null,"url":null,"abstract":"<div><div>In active noise control, pressure-based control strategies for electroacoustic absorbers depend on the loudspeakers’ electromechanical properties, known as Thiele–Small parameters, to implement impedance control. Due to the viscoelastic nature of loudspeaker materials, these parameters are sensitive to environmental conditions, particularly temperature. This study investigates the impact of temperature on the impedance control of electroacoustic absorbers. The acoustic impedance of several absorbers is measured over a broad temperature range, and an analytical model is used to identify the variation of the Thiele–Small parameters with temperature. A viscoelastic material characterization framework is then proposed, employing the Fractional Zener, Generalized Maxwell, and Generalized Fractional Maxwell models. These models are identified for individual absorbers and compared in terms of accuracy and computational cost. A generalized approach through a normalized curve derived from multiple absorbers is introduced to estimate the parameters of unknown absorbers. The pressure-based control law is subsequently updated to include temperature-dependent parameters, enabling evaluation of their influence on absorber passivity. Results demonstrate that adapting the control strategy using either direct measurements or model-based estimations enhances the acoustic passivity of electroacoustic absorbers.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"621 ","pages":"Article 119468"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the temperature on the impedance control of pressure-based, current-driven electroacoustic absorbers: Addressing the loss of passivity using a viscoelastic material model\",\"authors\":\"Leonardo Ferreira ,&nbsp;Rafael de O. Teloli ,&nbsp;Emanuele de Bono ,&nbsp;Morvan Ouisse\",\"doi\":\"10.1016/j.jsv.2025.119468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In active noise control, pressure-based control strategies for electroacoustic absorbers depend on the loudspeakers’ electromechanical properties, known as Thiele–Small parameters, to implement impedance control. Due to the viscoelastic nature of loudspeaker materials, these parameters are sensitive to environmental conditions, particularly temperature. This study investigates the impact of temperature on the impedance control of electroacoustic absorbers. The acoustic impedance of several absorbers is measured over a broad temperature range, and an analytical model is used to identify the variation of the Thiele–Small parameters with temperature. A viscoelastic material characterization framework is then proposed, employing the Fractional Zener, Generalized Maxwell, and Generalized Fractional Maxwell models. These models are identified for individual absorbers and compared in terms of accuracy and computational cost. A generalized approach through a normalized curve derived from multiple absorbers is introduced to estimate the parameters of unknown absorbers. The pressure-based control law is subsequently updated to include temperature-dependent parameters, enabling evaluation of their influence on absorber passivity. Results demonstrate that adapting the control strategy using either direct measurements or model-based estimations enhances the acoustic passivity of electroacoustic absorbers.</div></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":\"621 \",\"pages\":\"Article 119468\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X25005413\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25005413","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在主动噪声控制中,基于压力的电声吸收器控制策略依赖于扬声器的机电特性(称为Thiele-Small参数)来实现阻抗控制。由于扬声器材料的粘弹性,这些参数对环境条件很敏感,尤其是温度。本文研究了温度对电声吸收器阻抗控制的影响。在较宽的温度范围内测量了几种吸波器的声阻抗,并利用解析模型确定了Thiele-Small参数随温度的变化。然后提出了粘弹性材料表征框架,采用分数齐纳,广义麦克斯韦和广义分数麦克斯韦模型。这些模型被确定为个别吸收剂,并在准确性和计算成本方面进行比较。介绍了一种通过由多个吸波器导出的归一化曲线来估计未知吸波器参数的广义方法。基于压力的控制律随后更新为包括温度相关参数,从而能够评估它们对吸收器被动性的影响。结果表明,采用直接测量或基于模型估计的控制策略可以提高电声吸收器的声被动性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of the temperature on the impedance control of pressure-based, current-driven electroacoustic absorbers: Addressing the loss of passivity using a viscoelastic material model
In active noise control, pressure-based control strategies for electroacoustic absorbers depend on the loudspeakers’ electromechanical properties, known as Thiele–Small parameters, to implement impedance control. Due to the viscoelastic nature of loudspeaker materials, these parameters are sensitive to environmental conditions, particularly temperature. This study investigates the impact of temperature on the impedance control of electroacoustic absorbers. The acoustic impedance of several absorbers is measured over a broad temperature range, and an analytical model is used to identify the variation of the Thiele–Small parameters with temperature. A viscoelastic material characterization framework is then proposed, employing the Fractional Zener, Generalized Maxwell, and Generalized Fractional Maxwell models. These models are identified for individual absorbers and compared in terms of accuracy and computational cost. A generalized approach through a normalized curve derived from multiple absorbers is introduced to estimate the parameters of unknown absorbers. The pressure-based control law is subsequently updated to include temperature-dependent parameters, enabling evaluation of their influence on absorber passivity. Results demonstrate that adapting the control strategy using either direct measurements or model-based estimations enhances the acoustic passivity of electroacoustic absorbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信