基于大涡模拟的远场气动声学形状优化

IF 4.9 2区 工程技术 Q1 ACOUSTICS
Mohsen Hamedi, Brian C. Vermeire
{"title":"基于大涡模拟的远场气动声学形状优化","authors":"Mohsen Hamedi,&nbsp;Brian C. Vermeire","doi":"10.1016/j.jsv.2025.119492","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a shape optimization framework that combines a Flux Reconstruction (FR) spatial discretization, Large Eddy Simulation (LES), the Ffowcs-Williams and Hawkings (FW-H) formulation, and the gradient-free Mesh Adaptive Direct Search (MADS) optimization algorithm. We emphasize the necessity of duplicating the data surface to achieve accurate far-field noise prediction in spanwise periodic problems using the FW-H formulation. The proposed parallel implementation of the optimization framework ensures consistent runtime per optimization iteration, regardless of the number of design parameters, thereby addressing a common limitation of many gradient-free algorithms. The framework is demonstrated through far-field aeroacoustic shape optimization of NACA 4-digit airfoils at a Reynolds number of 23,000. The objective function minimizes the Overall Sound Pressure Level (OASPL) at a far-field observer positioned 10 unit chords below the trailing edge, while preserving the mean lift coefficient and reducing the mean drag coefficient. The optimized airfoil achieves an OASPL reduction of <span><math><mrow><mn>5</mn><mo>.</mo><mn>9</mn><mspace></mspace><mi>dB</mi></mrow></math></span> and over 14% decrease in mean drag, while maintaining the mean lift coefficient. These results underscore the feasibility and effectiveness of the proposed approach for practical shape optimization applications.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"621 ","pages":"Article 119492"},"PeriodicalIF":4.9000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Far-Field Aeroacoustic Shape Optimization using Large Eddy Simulation\",\"authors\":\"Mohsen Hamedi,&nbsp;Brian C. Vermeire\",\"doi\":\"10.1016/j.jsv.2025.119492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a shape optimization framework that combines a Flux Reconstruction (FR) spatial discretization, Large Eddy Simulation (LES), the Ffowcs-Williams and Hawkings (FW-H) formulation, and the gradient-free Mesh Adaptive Direct Search (MADS) optimization algorithm. We emphasize the necessity of duplicating the data surface to achieve accurate far-field noise prediction in spanwise periodic problems using the FW-H formulation. The proposed parallel implementation of the optimization framework ensures consistent runtime per optimization iteration, regardless of the number of design parameters, thereby addressing a common limitation of many gradient-free algorithms. The framework is demonstrated through far-field aeroacoustic shape optimization of NACA 4-digit airfoils at a Reynolds number of 23,000. The objective function minimizes the Overall Sound Pressure Level (OASPL) at a far-field observer positioned 10 unit chords below the trailing edge, while preserving the mean lift coefficient and reducing the mean drag coefficient. The optimized airfoil achieves an OASPL reduction of <span><math><mrow><mn>5</mn><mo>.</mo><mn>9</mn><mspace></mspace><mi>dB</mi></mrow></math></span> and over 14% decrease in mean drag, while maintaining the mean lift coefficient. These results underscore the feasibility and effectiveness of the proposed approach for practical shape optimization applications.</div></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":\"621 \",\"pages\":\"Article 119492\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X25005656\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25005656","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

该研究提出了一种形状优化框架,该框架结合了通量重建(FR)空间离散化、大涡模拟(LES)、Ffowcs-Williams和Hawkings (FW-H)公式和无梯度网格自适应直接搜索(MADS)优化算法。我们强调重复数据表面的必要性,以实现准确的远场噪声预测,在跨度周期问题中使用FW-H公式。所提出的优化框架的并行实现确保每次优化迭代的运行时间一致,而不管设计参数的数量,从而解决了许多无梯度算法的共同限制。通过雷诺数为23000的NACA四位数翼型远场气动声学形状优化,对该框架进行了验证。该目标函数使位于后缘下方10个单位弦处的远场观测站的总声压级(OASPL)最小化,同时保持平均升力系数并减小平均阻力系数。优化后的翼型在保持平均升力系数的同时,OASPL降低了5.9dB,平均阻力降低了14%以上。这些结果强调了该方法在实际形状优化应用中的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Far-Field Aeroacoustic Shape Optimization using Large Eddy Simulation
This study presents a shape optimization framework that combines a Flux Reconstruction (FR) spatial discretization, Large Eddy Simulation (LES), the Ffowcs-Williams and Hawkings (FW-H) formulation, and the gradient-free Mesh Adaptive Direct Search (MADS) optimization algorithm. We emphasize the necessity of duplicating the data surface to achieve accurate far-field noise prediction in spanwise periodic problems using the FW-H formulation. The proposed parallel implementation of the optimization framework ensures consistent runtime per optimization iteration, regardless of the number of design parameters, thereby addressing a common limitation of many gradient-free algorithms. The framework is demonstrated through far-field aeroacoustic shape optimization of NACA 4-digit airfoils at a Reynolds number of 23,000. The objective function minimizes the Overall Sound Pressure Level (OASPL) at a far-field observer positioned 10 unit chords below the trailing edge, while preserving the mean lift coefficient and reducing the mean drag coefficient. The optimized airfoil achieves an OASPL reduction of 5.9dB and over 14% decrease in mean drag, while maintaining the mean lift coefficient. These results underscore the feasibility and effectiveness of the proposed approach for practical shape optimization applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信