纳米器件热电效率的非线性修正

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Raymond J. Hartig , Ioan Grosu , Ionel Ţifrea
{"title":"纳米器件热电效率的非线性修正","authors":"Raymond J. Hartig ,&nbsp;Ioan Grosu ,&nbsp;Ionel Ţifrea","doi":"10.1016/j.physe.2025.116383","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the nonlinear thermoelectric transport in a generic nanoscale device connected to two side reservoirs at different temperatures (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>) and chemical potentials (<span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>). We derive equations for the charge (electric) and heat (thermal) currents. These equations allow for the estimation of the second order contributions to the system’s thermoelectric response and the <em>analytical</em> derivation of the first nonlinear contributions to the system’s electric conductance <span><math><msup><mrow><mi>σ</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup></math></span>, Seebeck coefficient <span><math><msup><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup></math></span>, and electronic thermal conductance <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>e</mi><mi>l</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msubsup></math></span>. In the generation mode, when the system’s output power is positive (<span><math><mrow><mi>P</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>), we estimate the maximum output power and efficiency of the system. The results are general and rely on generic dimensionless kinetic transport coefficients <span><math><mrow><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>μ</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> that depends on the system’s characteristic electronic transmission function <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>. To outline the differences between the linear and nonlinear approximations we consider the particular case of a generalized Fano line-shape electronic transmission function and exactly calculate the dimensionless kinetic transport coefficients in terms of Hurwitz zeta functions and Bernoulli numbers. The output power efficiency of the system is estimated as function of the energy <span><math><mrow><mi>ɛ</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>−</mo><mi>μ</mi><mo>)</mo></mrow><mo>/</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>B</mi></mrow></msub><mi>T</mi></mrow></math></span> and broadening <span><math><mrow><mi>γ</mi><mo>=</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>/</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>B</mi></mrow></msub><mi>T</mi></mrow></math></span> parameters. These results support the need for higher order terms in the theoretical analysis of the thermoelectric transport in nanoscale devices and allow for the optimization of the system’s properties for an efficient thermoelectric response.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"175 ","pages":"Article 116383"},"PeriodicalIF":2.9000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear corrections to the thermoelectric efficiency of a nanoscale device\",\"authors\":\"Raymond J. Hartig ,&nbsp;Ioan Grosu ,&nbsp;Ionel Ţifrea\",\"doi\":\"10.1016/j.physe.2025.116383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the nonlinear thermoelectric transport in a generic nanoscale device connected to two side reservoirs at different temperatures (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>) and chemical potentials (<span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>). We derive equations for the charge (electric) and heat (thermal) currents. These equations allow for the estimation of the second order contributions to the system’s thermoelectric response and the <em>analytical</em> derivation of the first nonlinear contributions to the system’s electric conductance <span><math><msup><mrow><mi>σ</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup></math></span>, Seebeck coefficient <span><math><msup><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup></math></span>, and electronic thermal conductance <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>e</mi><mi>l</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msubsup></math></span>. In the generation mode, when the system’s output power is positive (<span><math><mrow><mi>P</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>), we estimate the maximum output power and efficiency of the system. The results are general and rely on generic dimensionless kinetic transport coefficients <span><math><mrow><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>μ</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> that depends on the system’s characteristic electronic transmission function <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>. To outline the differences between the linear and nonlinear approximations we consider the particular case of a generalized Fano line-shape electronic transmission function and exactly calculate the dimensionless kinetic transport coefficients in terms of Hurwitz zeta functions and Bernoulli numbers. The output power efficiency of the system is estimated as function of the energy <span><math><mrow><mi>ɛ</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>−</mo><mi>μ</mi><mo>)</mo></mrow><mo>/</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>B</mi></mrow></msub><mi>T</mi></mrow></math></span> and broadening <span><math><mrow><mi>γ</mi><mo>=</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>/</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>B</mi></mrow></msub><mi>T</mi></mrow></math></span> parameters. These results support the need for higher order terms in the theoretical analysis of the thermoelectric transport in nanoscale devices and allow for the optimization of the system’s properties for an efficient thermoelectric response.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"175 \",\"pages\":\"Article 116383\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947725002139\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725002139","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在不同温度(TL和TR)和化学势(μL和μR)下连接两个侧储层的通用纳米器件的非线性热电输运。我们推导出电荷(电)流和热(热)流的方程。这些方程允许对系统热电响应的二阶贡献进行估计,并对系统电导σ(2)、塞贝克系数S(2)和电子热导κel(2)的一阶非线性贡献进行解析推导。在发电模式下,当系统的输出功率为正(P>0)时,我们估计系统的最大输出功率和效率。结果具有普遍性,依赖于依赖于系统特征电子传输函数τ(E)的一般无因次动力学输运系数Knp(μ,T)。为了概述线性近似和非线性近似的区别,我们考虑了广义法诺线形电子传输函数的特殊情况,并精确计算了基于Hurwitz zeta函数和伯努利数的无因次动力学传输系数。系统的输出功率效率估计为能量=(Ed−μ)/kBT和展宽γ=Γd/kBT参数的函数。这些结果支持在纳米级器件热电输运的理论分析中需要高阶项,并允许优化系统特性以获得有效的热电响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear corrections to the thermoelectric efficiency of a nanoscale device
We investigate the nonlinear thermoelectric transport in a generic nanoscale device connected to two side reservoirs at different temperatures (TL and TR) and chemical potentials (μL and μR). We derive equations for the charge (electric) and heat (thermal) currents. These equations allow for the estimation of the second order contributions to the system’s thermoelectric response and the analytical derivation of the first nonlinear contributions to the system’s electric conductance σ(2), Seebeck coefficient S(2), and electronic thermal conductance κel(2). In the generation mode, when the system’s output power is positive (P>0), we estimate the maximum output power and efficiency of the system. The results are general and rely on generic dimensionless kinetic transport coefficients Knp(μ,T) that depends on the system’s characteristic electronic transmission function τ(E). To outline the differences between the linear and nonlinear approximations we consider the particular case of a generalized Fano line-shape electronic transmission function and exactly calculate the dimensionless kinetic transport coefficients in terms of Hurwitz zeta functions and Bernoulli numbers. The output power efficiency of the system is estimated as function of the energy ɛ=(Edμ)/kBT and broadening γ=Γd/kBT parameters. These results support the need for higher order terms in the theoretical analysis of the thermoelectric transport in nanoscale devices and allow for the optimization of the system’s properties for an efficient thermoelectric response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信