{"title":"纳米器件热电效率的非线性修正","authors":"Raymond J. Hartig , Ioan Grosu , Ionel Ţifrea","doi":"10.1016/j.physe.2025.116383","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the nonlinear thermoelectric transport in a generic nanoscale device connected to two side reservoirs at different temperatures (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>) and chemical potentials (<span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>). We derive equations for the charge (electric) and heat (thermal) currents. These equations allow for the estimation of the second order contributions to the system’s thermoelectric response and the <em>analytical</em> derivation of the first nonlinear contributions to the system’s electric conductance <span><math><msup><mrow><mi>σ</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup></math></span>, Seebeck coefficient <span><math><msup><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup></math></span>, and electronic thermal conductance <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>e</mi><mi>l</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msubsup></math></span>. In the generation mode, when the system’s output power is positive (<span><math><mrow><mi>P</mi><mo>></mo><mn>0</mn></mrow></math></span>), we estimate the maximum output power and efficiency of the system. The results are general and rely on generic dimensionless kinetic transport coefficients <span><math><mrow><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>μ</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> that depends on the system’s characteristic electronic transmission function <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>. To outline the differences between the linear and nonlinear approximations we consider the particular case of a generalized Fano line-shape electronic transmission function and exactly calculate the dimensionless kinetic transport coefficients in terms of Hurwitz zeta functions and Bernoulli numbers. The output power efficiency of the system is estimated as function of the energy <span><math><mrow><mi>ɛ</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>−</mo><mi>μ</mi><mo>)</mo></mrow><mo>/</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>B</mi></mrow></msub><mi>T</mi></mrow></math></span> and broadening <span><math><mrow><mi>γ</mi><mo>=</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>/</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>B</mi></mrow></msub><mi>T</mi></mrow></math></span> parameters. These results support the need for higher order terms in the theoretical analysis of the thermoelectric transport in nanoscale devices and allow for the optimization of the system’s properties for an efficient thermoelectric response.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"175 ","pages":"Article 116383"},"PeriodicalIF":2.9000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear corrections to the thermoelectric efficiency of a nanoscale device\",\"authors\":\"Raymond J. Hartig , Ioan Grosu , Ionel Ţifrea\",\"doi\":\"10.1016/j.physe.2025.116383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the nonlinear thermoelectric transport in a generic nanoscale device connected to two side reservoirs at different temperatures (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>) and chemical potentials (<span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>). We derive equations for the charge (electric) and heat (thermal) currents. These equations allow for the estimation of the second order contributions to the system’s thermoelectric response and the <em>analytical</em> derivation of the first nonlinear contributions to the system’s electric conductance <span><math><msup><mrow><mi>σ</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup></math></span>, Seebeck coefficient <span><math><msup><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup></math></span>, and electronic thermal conductance <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>e</mi><mi>l</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msubsup></math></span>. In the generation mode, when the system’s output power is positive (<span><math><mrow><mi>P</mi><mo>></mo><mn>0</mn></mrow></math></span>), we estimate the maximum output power and efficiency of the system. The results are general and rely on generic dimensionless kinetic transport coefficients <span><math><mrow><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>μ</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> that depends on the system’s characteristic electronic transmission function <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>. To outline the differences between the linear and nonlinear approximations we consider the particular case of a generalized Fano line-shape electronic transmission function and exactly calculate the dimensionless kinetic transport coefficients in terms of Hurwitz zeta functions and Bernoulli numbers. The output power efficiency of the system is estimated as function of the energy <span><math><mrow><mi>ɛ</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>−</mo><mi>μ</mi><mo>)</mo></mrow><mo>/</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>B</mi></mrow></msub><mi>T</mi></mrow></math></span> and broadening <span><math><mrow><mi>γ</mi><mo>=</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>/</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>B</mi></mrow></msub><mi>T</mi></mrow></math></span> parameters. These results support the need for higher order terms in the theoretical analysis of the thermoelectric transport in nanoscale devices and allow for the optimization of the system’s properties for an efficient thermoelectric response.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"175 \",\"pages\":\"Article 116383\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947725002139\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725002139","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Nonlinear corrections to the thermoelectric efficiency of a nanoscale device
We investigate the nonlinear thermoelectric transport in a generic nanoscale device connected to two side reservoirs at different temperatures ( and ) and chemical potentials ( and ). We derive equations for the charge (electric) and heat (thermal) currents. These equations allow for the estimation of the second order contributions to the system’s thermoelectric response and the analytical derivation of the first nonlinear contributions to the system’s electric conductance , Seebeck coefficient , and electronic thermal conductance . In the generation mode, when the system’s output power is positive (), we estimate the maximum output power and efficiency of the system. The results are general and rely on generic dimensionless kinetic transport coefficients that depends on the system’s characteristic electronic transmission function . To outline the differences between the linear and nonlinear approximations we consider the particular case of a generalized Fano line-shape electronic transmission function and exactly calculate the dimensionless kinetic transport coefficients in terms of Hurwitz zeta functions and Bernoulli numbers. The output power efficiency of the system is estimated as function of the energy and broadening parameters. These results support the need for higher order terms in the theoretical analysis of the thermoelectric transport in nanoscale devices and allow for the optimization of the system’s properties for an efficient thermoelectric response.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures