{"title":"早期临床试验的因果推断:方差分解和患者纳入顺序","authors":"Matthieu Clertant , Meliha Akouba , Alexia Iasonos , John O’Quigley","doi":"10.1016/j.jspi.2025.106352","DOIUrl":null,"url":null,"abstract":"<div><div>Causal inference tools, in particular those of variance decomposition, hierarchical data structures and counterfactuals, are applied to the study of the methodology of dose-finding studies in oncology. A detailed variance decomposition brings into a much sharper focus the relative performance of different designs. We develop and present new results on the role played by the order of patient inclusions into a sequential dose-finding study. These results make it clear why, previously, authors could easily be misled into a conclusion that different designs enjoy similar performances. This is not so and we show how to avoid making that mistake. We highlight our findings via both theoretical and numerical studies.</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"242 ","pages":"Article 106352"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal inference in early phase clinical trials: Variance decomposition and order of patient inclusion\",\"authors\":\"Matthieu Clertant , Meliha Akouba , Alexia Iasonos , John O’Quigley\",\"doi\":\"10.1016/j.jspi.2025.106352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Causal inference tools, in particular those of variance decomposition, hierarchical data structures and counterfactuals, are applied to the study of the methodology of dose-finding studies in oncology. A detailed variance decomposition brings into a much sharper focus the relative performance of different designs. We develop and present new results on the role played by the order of patient inclusions into a sequential dose-finding study. These results make it clear why, previously, authors could easily be misled into a conclusion that different designs enjoy similar performances. This is not so and we show how to avoid making that mistake. We highlight our findings via both theoretical and numerical studies.</div></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"242 \",\"pages\":\"Article 106352\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375825000904\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375825000904","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Causal inference in early phase clinical trials: Variance decomposition and order of patient inclusion
Causal inference tools, in particular those of variance decomposition, hierarchical data structures and counterfactuals, are applied to the study of the methodology of dose-finding studies in oncology. A detailed variance decomposition brings into a much sharper focus the relative performance of different designs. We develop and present new results on the role played by the order of patient inclusions into a sequential dose-finding study. These results make it clear why, previously, authors could easily be misled into a conclusion that different designs enjoy similar performances. This is not so and we show how to avoid making that mistake. We highlight our findings via both theoretical and numerical studies.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.