电场作用下多孔介质核磁共振采收率分析:来自微观结构和孔隙尺度分析的见解

IF 4.6 0 ENERGY & FUELS
Qiang Li , Zhengfu Ning , Yuheng Yang , Xiqian Zheng , Jun Li , Zejiang Jia
{"title":"电场作用下多孔介质核磁共振采收率分析:来自微观结构和孔隙尺度分析的见解","authors":"Qiang Li ,&nbsp;Zhengfu Ning ,&nbsp;Yuheng Yang ,&nbsp;Xiqian Zheng ,&nbsp;Jun Li ,&nbsp;Zejiang Jia","doi":"10.1016/j.geoen.2025.214241","DOIUrl":null,"url":null,"abstract":"<div><div>Carbonate reservoirs, critical to global hydrocarbon resources, face development challenges due to heterogeneous multi-scale pore structures, resulting in severe water channeling and low recovery rates (&lt;30 %) during conventional waterflooding. While direct current (DC) electric field-assisted oil displacement offers efficient, cost-effective, and eco-friendly potential, its microscopic mechanisms remain underexplored. This study combines multi-scale pore characterization and core flooding experiments to systematically evaluate electric field effects on multiphase flow in heterogeneous reservoirs, emphasizing pore-scale electro-osmosis–electrophoresis synergy. Analyses of a calcite-dominated carbonate formation (95 % calcite, inter/intragranular porosity, poor connectivity) using scanning electron microscope (SEM), thin-section petrography, mercury intrusion, and nuclear magnetic resonance spectroscopy (NMR) revealed limited conventional waterflooding performance (25 %–28 % recovery), primarily mobilizing macropores (&gt;100 μm). Applying a 20V DC electric field increased recovery by 10.6 %, with an optimized “post-water-free electric drive” strategy adding 7.57 % incremental recovery. Even in long heterogeneous cores, a sustained 4.7 % recovery gain demonstrated field applicability. NMR confirmed enhanced oil mobilization in mesopores (10–100 μm), expanding accessible pore networks. Kinetic analysis identified dual mechanisms: Optimal displacement pressure gradients (0.5–0.6 MPa/cm) stabilized injection pressure, suppressed water channeling, and delayed water breakthrough; Intensified electro-osmosis promoted ion-directed migration, dynamically stabilizing pressure fields while reducing water consumption by ∼10 %. These processes synergistically improved displacement efficiency across pore scales. The study demonstrates DC electric fields effectively regulate multi-scale pore utilization and optimize seepage field distribution, providing mechanistic insights and engineering guidelines for carbonate reservoir development. By enhancing recovery efficiency while reducing water use and injection energy requirements, this approach demonstrates potential for low-carbon hydrocarbon recovery, supporting sustainable energy transitions.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"257 ","pages":"Article 214241"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of oil recovery efficiency based on nuclear magnetic resonance in porous media under the action of electric field: insights from microstructure and pore scale analysis\",\"authors\":\"Qiang Li ,&nbsp;Zhengfu Ning ,&nbsp;Yuheng Yang ,&nbsp;Xiqian Zheng ,&nbsp;Jun Li ,&nbsp;Zejiang Jia\",\"doi\":\"10.1016/j.geoen.2025.214241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbonate reservoirs, critical to global hydrocarbon resources, face development challenges due to heterogeneous multi-scale pore structures, resulting in severe water channeling and low recovery rates (&lt;30 %) during conventional waterflooding. While direct current (DC) electric field-assisted oil displacement offers efficient, cost-effective, and eco-friendly potential, its microscopic mechanisms remain underexplored. This study combines multi-scale pore characterization and core flooding experiments to systematically evaluate electric field effects on multiphase flow in heterogeneous reservoirs, emphasizing pore-scale electro-osmosis–electrophoresis synergy. Analyses of a calcite-dominated carbonate formation (95 % calcite, inter/intragranular porosity, poor connectivity) using scanning electron microscope (SEM), thin-section petrography, mercury intrusion, and nuclear magnetic resonance spectroscopy (NMR) revealed limited conventional waterflooding performance (25 %–28 % recovery), primarily mobilizing macropores (&gt;100 μm). Applying a 20V DC electric field increased recovery by 10.6 %, with an optimized “post-water-free electric drive” strategy adding 7.57 % incremental recovery. Even in long heterogeneous cores, a sustained 4.7 % recovery gain demonstrated field applicability. NMR confirmed enhanced oil mobilization in mesopores (10–100 μm), expanding accessible pore networks. Kinetic analysis identified dual mechanisms: Optimal displacement pressure gradients (0.5–0.6 MPa/cm) stabilized injection pressure, suppressed water channeling, and delayed water breakthrough; Intensified electro-osmosis promoted ion-directed migration, dynamically stabilizing pressure fields while reducing water consumption by ∼10 %. These processes synergistically improved displacement efficiency across pore scales. The study demonstrates DC electric fields effectively regulate multi-scale pore utilization and optimize seepage field distribution, providing mechanistic insights and engineering guidelines for carbonate reservoir development. By enhancing recovery efficiency while reducing water use and injection energy requirements, this approach demonstrates potential for low-carbon hydrocarbon recovery, supporting sustainable energy transitions.</div></div>\",\"PeriodicalId\":100578,\"journal\":{\"name\":\"Geoenergy Science and Engineering\",\"volume\":\"257 \",\"pages\":\"Article 214241\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoenergy Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949891025005998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025005998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

碳酸盐岩储层是全球油气资源的重要组成部分,由于其非均质多尺度孔隙结构,导致常规水驱过程中严重的水窜和较低的采收率(30%),因此面临开发挑战。虽然直流(DC)电场辅助驱油具有高效、经济、环保的潜力,但其微观机制仍未得到充分研究。本研究结合多尺度孔隙表征和岩心驱油实验,系统评价了电场对非均质储层多相流的影响,强调了孔隙尺度电渗透-电泳协同作用。利用扫描电镜(SEM)、薄片岩石学、汞侵入和核磁共振波谱(NMR)分析方解石为主的碳酸盐岩地层(95%方解石,粒间/粒内孔隙,连通性差),发现常规水驱性能有限(采收率为25% - 28%),主要是运移大孔隙(>100 μm)。施加20V直流电场可使采收率提高10.6%,优化后的“无水后电驱动”策略可使采收率增加7.57%。即使在长段非均匀岩心中,持续4.7%的采收率也证明了该技术在现场的适用性。核磁共振证实了中孔(10-100 μm)中油的动员增强,扩大了可达的孔隙网络。动力学分析确定了双重机制:最佳驱替压力梯度(0.5-0.6 MPa/cm)稳定注入压力,抑制水窜,延迟水侵;强化的电渗透促进了离子定向迁移,动态稳定了压力场,同时减少了约10%的水消耗。这些过程协同提高了孔隙尺度上的驱替效率。研究表明,直流电场可有效调节多尺度孔隙利用,优化渗流场分布,为碳酸盐岩储层开发提供机理认识和工程指导。通过提高采收率,同时减少用水量和注入能量需求,该方法展示了低碳碳氢化合物采收率的潜力,支持可持续的能源转型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of oil recovery efficiency based on nuclear magnetic resonance in porous media under the action of electric field: insights from microstructure and pore scale analysis
Carbonate reservoirs, critical to global hydrocarbon resources, face development challenges due to heterogeneous multi-scale pore structures, resulting in severe water channeling and low recovery rates (<30 %) during conventional waterflooding. While direct current (DC) electric field-assisted oil displacement offers efficient, cost-effective, and eco-friendly potential, its microscopic mechanisms remain underexplored. This study combines multi-scale pore characterization and core flooding experiments to systematically evaluate electric field effects on multiphase flow in heterogeneous reservoirs, emphasizing pore-scale electro-osmosis–electrophoresis synergy. Analyses of a calcite-dominated carbonate formation (95 % calcite, inter/intragranular porosity, poor connectivity) using scanning electron microscope (SEM), thin-section petrography, mercury intrusion, and nuclear magnetic resonance spectroscopy (NMR) revealed limited conventional waterflooding performance (25 %–28 % recovery), primarily mobilizing macropores (>100 μm). Applying a 20V DC electric field increased recovery by 10.6 %, with an optimized “post-water-free electric drive” strategy adding 7.57 % incremental recovery. Even in long heterogeneous cores, a sustained 4.7 % recovery gain demonstrated field applicability. NMR confirmed enhanced oil mobilization in mesopores (10–100 μm), expanding accessible pore networks. Kinetic analysis identified dual mechanisms: Optimal displacement pressure gradients (0.5–0.6 MPa/cm) stabilized injection pressure, suppressed water channeling, and delayed water breakthrough; Intensified electro-osmosis promoted ion-directed migration, dynamically stabilizing pressure fields while reducing water consumption by ∼10 %. These processes synergistically improved displacement efficiency across pore scales. The study demonstrates DC electric fields effectively regulate multi-scale pore utilization and optimize seepage field distribution, providing mechanistic insights and engineering guidelines for carbonate reservoir development. By enhancing recovery efficiency while reducing water use and injection energy requirements, this approach demonstrates potential for low-carbon hydrocarbon recovery, supporting sustainable energy transitions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信