Chao Li , Zhifeng Qin , Zhenfei Tang , Yidan Wang , Bo Zhang , Jinwei Tian , Zhao Wang
{"title":"血管内OCT稀疏注释冠状动脉钙化分割:利用自监督学习和一致性正则化","authors":"Chao Li , Zhifeng Qin , Zhenfei Tang , Yidan Wang , Bo Zhang , Jinwei Tian , Zhao Wang","doi":"10.1016/j.compmedimag.2025.102653","DOIUrl":null,"url":null,"abstract":"<div><div>Assessing coronary artery calcification (CAC) is crucial in evaluating the progression of atherosclerosis and planning percutaneous coronary intervention (PCI). Intravascular Optical Coherence Tomography (OCT) is a commonly used imaging tool for evaluating CAC at micrometer-scale level and in three-dimensions for optimizing PCI. While existing deep learning methods have proven effective in OCT image analysis, they are hindered by the lack of large-scale, high-quality labels to train deep neural networks that can reach human level performance in practice. In this work, we propose an annotation-efficient approach for segmenting CAC in intravascular OCT images, leveraging self-supervised learning and consistency regularization. We employ a transformer encoder paired with a simple linear projection layer for self-supervised pre-training on unlabeled OCT data. Subsequently, a transformer-based segmentation model is fine-tuned on sparsely annotated OCT pullbacks with a contrast loss using a combination of unlabeled and labeled data. We collected 2,549,073 unlabeled OCT images from 7,108 OCT pullbacks for pre-training, and 1,106,347 sparsely annotated OCT images from 3,025 OCT pullbacks for model training and testing. The proposed approach consistently outperformed existing sparsely supervised methods on both internal and external datasets. In addition, extensive comparisons under full, partial, and sparse annotation schemes substantiated its high annotation efficiency. With 80% reduction in image labeling efforts, our method has the potential to expedite the development of deep learning models for processing large-scale medical image data.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"125 ","pages":"Article 102653"},"PeriodicalIF":4.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coronary artery calcification segmentation with sparse annotations in intravascular OCT: Leveraging self-supervised learning and consistency regularization\",\"authors\":\"Chao Li , Zhifeng Qin , Zhenfei Tang , Yidan Wang , Bo Zhang , Jinwei Tian , Zhao Wang\",\"doi\":\"10.1016/j.compmedimag.2025.102653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Assessing coronary artery calcification (CAC) is crucial in evaluating the progression of atherosclerosis and planning percutaneous coronary intervention (PCI). Intravascular Optical Coherence Tomography (OCT) is a commonly used imaging tool for evaluating CAC at micrometer-scale level and in three-dimensions for optimizing PCI. While existing deep learning methods have proven effective in OCT image analysis, they are hindered by the lack of large-scale, high-quality labels to train deep neural networks that can reach human level performance in practice. In this work, we propose an annotation-efficient approach for segmenting CAC in intravascular OCT images, leveraging self-supervised learning and consistency regularization. We employ a transformer encoder paired with a simple linear projection layer for self-supervised pre-training on unlabeled OCT data. Subsequently, a transformer-based segmentation model is fine-tuned on sparsely annotated OCT pullbacks with a contrast loss using a combination of unlabeled and labeled data. We collected 2,549,073 unlabeled OCT images from 7,108 OCT pullbacks for pre-training, and 1,106,347 sparsely annotated OCT images from 3,025 OCT pullbacks for model training and testing. The proposed approach consistently outperformed existing sparsely supervised methods on both internal and external datasets. In addition, extensive comparisons under full, partial, and sparse annotation schemes substantiated its high annotation efficiency. With 80% reduction in image labeling efforts, our method has the potential to expedite the development of deep learning models for processing large-scale medical image data.</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"125 \",\"pages\":\"Article 102653\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611125001624\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125001624","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Coronary artery calcification segmentation with sparse annotations in intravascular OCT: Leveraging self-supervised learning and consistency regularization
Assessing coronary artery calcification (CAC) is crucial in evaluating the progression of atherosclerosis and planning percutaneous coronary intervention (PCI). Intravascular Optical Coherence Tomography (OCT) is a commonly used imaging tool for evaluating CAC at micrometer-scale level and in three-dimensions for optimizing PCI. While existing deep learning methods have proven effective in OCT image analysis, they are hindered by the lack of large-scale, high-quality labels to train deep neural networks that can reach human level performance in practice. In this work, we propose an annotation-efficient approach for segmenting CAC in intravascular OCT images, leveraging self-supervised learning and consistency regularization. We employ a transformer encoder paired with a simple linear projection layer for self-supervised pre-training on unlabeled OCT data. Subsequently, a transformer-based segmentation model is fine-tuned on sparsely annotated OCT pullbacks with a contrast loss using a combination of unlabeled and labeled data. We collected 2,549,073 unlabeled OCT images from 7,108 OCT pullbacks for pre-training, and 1,106,347 sparsely annotated OCT images from 3,025 OCT pullbacks for model training and testing. The proposed approach consistently outperformed existing sparsely supervised methods on both internal and external datasets. In addition, extensive comparisons under full, partial, and sparse annotation schemes substantiated its high annotation efficiency. With 80% reduction in image labeling efforts, our method has the potential to expedite the development of deep learning models for processing large-scale medical image data.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.