L. Pigatto , G. Frello , L. Garzotti , Y.Q. Liu , L. Novello , M. Takechi , E. Tomasina , T. Bolzonella
{"title":"误差场控制线圈应用于初始JT-60SA等离子体的建模驱动要求","authors":"L. Pigatto , G. Frello , L. Garzotti , Y.Q. Liu , L. Novello , M. Takechi , E. Tomasina , T. Bolzonella","doi":"10.1016/j.fusengdes.2025.115489","DOIUrl":null,"url":null,"abstract":"<div><div>JT-60SA is a large superconducting tokamak built in Naka, Japan. After the successful achievement of its first MA-class plasma, the installation of several additional sub-systems, including a set of non-axisymmetric Error Field Correction Coils (EFCC), is ongoing. Optimization of future JT-60SA plasma scenarios will critically depend on the correct use of EFCC, including careful fulfillment of system specifications. In addition to that, preparation and risk mitigation of early ITER operations will greatly benefit from the experience gained by early EFCC application to JT-60SA experiments, in particular to optimize error field detection and control strategies. In this work, EFCC application in JT-60SA Initial Research Phase I perspective scenarios is modeled including plasma response. Impact of (Resonant) Magnetic Perturbations on the different plasma scenarios is assessed for both core and pedestal regions by the linear resistive MHD code MARS-F. The dominant core response to EFs is discussed case by case and compared to mode locking thresholds from literature. Typical current/voltage amplitudes and wave-forms are then compared to EFCC specifications in order to assess a safe operational space.</div></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":"222 ","pages":"Article 115489"},"PeriodicalIF":2.0000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling-driven requirements for Error Field Control Coil application to initial JT-60SA plasmas\",\"authors\":\"L. Pigatto , G. Frello , L. Garzotti , Y.Q. Liu , L. Novello , M. Takechi , E. Tomasina , T. Bolzonella\",\"doi\":\"10.1016/j.fusengdes.2025.115489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>JT-60SA is a large superconducting tokamak built in Naka, Japan. After the successful achievement of its first MA-class plasma, the installation of several additional sub-systems, including a set of non-axisymmetric Error Field Correction Coils (EFCC), is ongoing. Optimization of future JT-60SA plasma scenarios will critically depend on the correct use of EFCC, including careful fulfillment of system specifications. In addition to that, preparation and risk mitigation of early ITER operations will greatly benefit from the experience gained by early EFCC application to JT-60SA experiments, in particular to optimize error field detection and control strategies. In this work, EFCC application in JT-60SA Initial Research Phase I perspective scenarios is modeled including plasma response. Impact of (Resonant) Magnetic Perturbations on the different plasma scenarios is assessed for both core and pedestal regions by the linear resistive MHD code MARS-F. The dominant core response to EFs is discussed case by case and compared to mode locking thresholds from literature. Typical current/voltage amplitudes and wave-forms are then compared to EFCC specifications in order to assess a safe operational space.</div></div>\",\"PeriodicalId\":55133,\"journal\":{\"name\":\"Fusion Engineering and Design\",\"volume\":\"222 \",\"pages\":\"Article 115489\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920379625006854\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379625006854","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Modeling-driven requirements for Error Field Control Coil application to initial JT-60SA plasmas
JT-60SA is a large superconducting tokamak built in Naka, Japan. After the successful achievement of its first MA-class plasma, the installation of several additional sub-systems, including a set of non-axisymmetric Error Field Correction Coils (EFCC), is ongoing. Optimization of future JT-60SA plasma scenarios will critically depend on the correct use of EFCC, including careful fulfillment of system specifications. In addition to that, preparation and risk mitigation of early ITER operations will greatly benefit from the experience gained by early EFCC application to JT-60SA experiments, in particular to optimize error field detection and control strategies. In this work, EFCC application in JT-60SA Initial Research Phase I perspective scenarios is modeled including plasma response. Impact of (Resonant) Magnetic Perturbations on the different plasma scenarios is assessed for both core and pedestal regions by the linear resistive MHD code MARS-F. The dominant core response to EFs is discussed case by case and compared to mode locking thresholds from literature. Typical current/voltage amplitudes and wave-forms are then compared to EFCC specifications in order to assess a safe operational space.
期刊介绍:
The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.