{"title":"二人博弈中纳什均衡算法的自动逼近分析","authors":"Xiaotie Deng , Dongchen Li , Hanyu Li","doi":"10.1016/j.ic.2025.105362","DOIUrl":null,"url":null,"abstract":"<div><div>Computing polynomial-time approximate Nash equilibria (NE) is a fundamental problem in algorithmic game theory, with deep connections to the complexity class TFNP. Recent advances in approximate NE algorithms have become increasingly sophisticated, making the verification of their approximation guarantees both complex and error-prone. We present the first automated method for analyzing approximation bounds of algorithms for two-player normal-form games. Given any algorithm that computes approximate NE, our approach automatically derives tight approximation bounds using constraint programming techniques. We demonstrate the effectiveness of our method by applying it to all known algorithms in the literature, reproducing their manually-proven approximation bounds within seconds and without human intervention. Our results provide both a powerful verification tool and new insights into the structure of approximate equilibrium computation.</div></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"307 ","pages":"Article 105362"},"PeriodicalIF":1.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automating approximation analysis for Nash equilibria algorithms in two-player games\",\"authors\":\"Xiaotie Deng , Dongchen Li , Hanyu Li\",\"doi\":\"10.1016/j.ic.2025.105362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Computing polynomial-time approximate Nash equilibria (NE) is a fundamental problem in algorithmic game theory, with deep connections to the complexity class TFNP. Recent advances in approximate NE algorithms have become increasingly sophisticated, making the verification of their approximation guarantees both complex and error-prone. We present the first automated method for analyzing approximation bounds of algorithms for two-player normal-form games. Given any algorithm that computes approximate NE, our approach automatically derives tight approximation bounds using constraint programming techniques. We demonstrate the effectiveness of our method by applying it to all known algorithms in the literature, reproducing their manually-proven approximation bounds within seconds and without human intervention. Our results provide both a powerful verification tool and new insights into the structure of approximate equilibrium computation.</div></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"307 \",\"pages\":\"Article 105362\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540125000987\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540125000987","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Automating approximation analysis for Nash equilibria algorithms in two-player games
Computing polynomial-time approximate Nash equilibria (NE) is a fundamental problem in algorithmic game theory, with deep connections to the complexity class TFNP. Recent advances in approximate NE algorithms have become increasingly sophisticated, making the verification of their approximation guarantees both complex and error-prone. We present the first automated method for analyzing approximation bounds of algorithms for two-player normal-form games. Given any algorithm that computes approximate NE, our approach automatically derives tight approximation bounds using constraint programming techniques. We demonstrate the effectiveness of our method by applying it to all known algorithms in the literature, reproducing their manually-proven approximation bounds within seconds and without human intervention. Our results provide both a powerful verification tool and new insights into the structure of approximate equilibrium computation.
期刊介绍:
Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as
-Biological computation and computational biology-
Computational complexity-
Computer theorem-proving-
Concurrency and distributed process theory-
Cryptographic theory-
Data base theory-
Decision problems in logic-
Design and analysis of algorithms-
Discrete optimization and mathematical programming-
Inductive inference and learning theory-
Logic & constraint programming-
Program verification & model checking-
Probabilistic & Quantum computation-
Semantics of programming languages-
Symbolic computation, lambda calculus, and rewriting systems-
Types and typechecking