转动自由度对单y振动钝体传热影响的研究

IF 2.5 3区 工程技术 Q2 MECHANICS
Qingchun Zhou, Xiaowei Liu, Chunji Hu
{"title":"转动自由度对单y振动钝体传热影响的研究","authors":"Qingchun Zhou,&nbsp;Xiaowei Liu,&nbsp;Chunji Hu","doi":"10.1016/j.euromechflu.2025.204388","DOIUrl":null,"url":null,"abstract":"<div><div>Active rotation is commonly employed in traditional enhanced heat dissipation applications. However, passive rotation, which operates without external energy input, leverages environmental energy more effectively, showing great potential for enhanced heat transfer applications. This study explores the impact of passive rotation on the heat transfer characteristics of single-degree-of-freedom transverse vibrations in circular cylinders and square prisms. Numerical simulations were performed under the conditions of <em>Re</em> = 100, <em>m</em>* = 2, <em>ζ</em> = 0, and <em>Pr</em> = 0.7. The results show that the rotational degree of freedom has minimal influence on the heat transfer of circular cylinders, with only a 1.11 % increase in Nusselt number. In contrast, it significantly enhances heat transfer in square prisms, leading to a 14.21 % increase. Further analysis reveals that the rotational degree of freedom transitions the vibration mode from pure vortex-induced vibration (VIV) to a combination of VIV and galloping, which is the primary mechanism behind the heat transfer enhancement. Flow field analysis indicates that this transition strengthens vortex intensity and disturbs the thermal boundary layer, providing a microscopic explanation for the observed heat transfer improvements. The introduction of rotational freedom in such systems offers a novel and effective approach to enhance heat transfer performance.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"115 ","pages":"Article 204388"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the influence of the rotational degree of freedom on the heat transfer of single-y vibrating blunt bodies\",\"authors\":\"Qingchun Zhou,&nbsp;Xiaowei Liu,&nbsp;Chunji Hu\",\"doi\":\"10.1016/j.euromechflu.2025.204388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Active rotation is commonly employed in traditional enhanced heat dissipation applications. However, passive rotation, which operates without external energy input, leverages environmental energy more effectively, showing great potential for enhanced heat transfer applications. This study explores the impact of passive rotation on the heat transfer characteristics of single-degree-of-freedom transverse vibrations in circular cylinders and square prisms. Numerical simulations were performed under the conditions of <em>Re</em> = 100, <em>m</em>* = 2, <em>ζ</em> = 0, and <em>Pr</em> = 0.7. The results show that the rotational degree of freedom has minimal influence on the heat transfer of circular cylinders, with only a 1.11 % increase in Nusselt number. In contrast, it significantly enhances heat transfer in square prisms, leading to a 14.21 % increase. Further analysis reveals that the rotational degree of freedom transitions the vibration mode from pure vortex-induced vibration (VIV) to a combination of VIV and galloping, which is the primary mechanism behind the heat transfer enhancement. Flow field analysis indicates that this transition strengthens vortex intensity and disturbs the thermal boundary layer, providing a microscopic explanation for the observed heat transfer improvements. The introduction of rotational freedom in such systems offers a novel and effective approach to enhance heat transfer performance.</div></div>\",\"PeriodicalId\":11985,\"journal\":{\"name\":\"European Journal of Mechanics B-fluids\",\"volume\":\"115 \",\"pages\":\"Article 204388\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics B-fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997754625001694\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754625001694","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

主动旋转通常用于传统的增强散热应用。然而,被动旋转在没有外部能量输入的情况下运行,更有效地利用环境能量,显示出增强传热应用的巨大潜力。本研究探讨了被动旋转对圆柱和方棱镜单自由度横向振动传热特性的影响。在Re = 100,m* = 2,ζ = 0,Pr = 0.7的条件下进行了数值模拟。结果表明:转动自由度对圆柱换热的影响最小,努塞尔数仅增加1.11 %;相比之下,它显著提高了方棱镜的传热,导致14.21% %的增加。进一步分析表明,旋转自由度将振动模式从单纯的涡激振动转变为涡激振动和驰骋振动的结合,这是传热增强的主要机制。流场分析表明,这种转变增强了涡旋强度,扰乱了热边界层,为观察到的传热改善提供了微观解释。在这种系统中引入旋转自由为提高传热性能提供了一种新颖有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the influence of the rotational degree of freedom on the heat transfer of single-y vibrating blunt bodies
Active rotation is commonly employed in traditional enhanced heat dissipation applications. However, passive rotation, which operates without external energy input, leverages environmental energy more effectively, showing great potential for enhanced heat transfer applications. This study explores the impact of passive rotation on the heat transfer characteristics of single-degree-of-freedom transverse vibrations in circular cylinders and square prisms. Numerical simulations were performed under the conditions of Re = 100, m* = 2, ζ = 0, and Pr = 0.7. The results show that the rotational degree of freedom has minimal influence on the heat transfer of circular cylinders, with only a 1.11 % increase in Nusselt number. In contrast, it significantly enhances heat transfer in square prisms, leading to a 14.21 % increase. Further analysis reveals that the rotational degree of freedom transitions the vibration mode from pure vortex-induced vibration (VIV) to a combination of VIV and galloping, which is the primary mechanism behind the heat transfer enhancement. Flow field analysis indicates that this transition strengthens vortex intensity and disturbs the thermal boundary layer, providing a microscopic explanation for the observed heat transfer improvements. The introduction of rotational freedom in such systems offers a novel and effective approach to enhance heat transfer performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信