利用颜色特征作为内窥镜图像的先验信息改善不均匀曝光

IF 4.9 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Yan Wang , Fa Yang , Xiaoying Pan , Hao Wang , Xiaopan Xu , Yiran Pan , Kun Yang , Ge Ma , Zhangchao Hao , Huanxiang Liu , Peng Yang
{"title":"利用颜色特征作为内窥镜图像的先验信息改善不均匀曝光","authors":"Yan Wang ,&nbsp;Fa Yang ,&nbsp;Xiaoying Pan ,&nbsp;Hao Wang ,&nbsp;Xiaopan Xu ,&nbsp;Yiran Pan ,&nbsp;Kun Yang ,&nbsp;Ge Ma ,&nbsp;Zhangchao Hao ,&nbsp;Huanxiang Liu ,&nbsp;Peng Yang","doi":"10.1016/j.bspc.2025.108825","DOIUrl":null,"url":null,"abstract":"<div><div>Endoscopic examinations often encounter color discrepancies in images due to uneven lighting and variations in color temperature of the light source, which directly affect the accuracy of disease screening and diagnosis. Traditional methods for enhancing low-quality endoscopic images primarily concentrate on correcting underexposed images, but do not simultaneously address properly exposed regions or suppress overexposed regions in the image. To address these issues, this study proposes a novel network structure, EndoUEI, which leverages color priors to improve over / underexposure of endoscopic images. The EndoUEI integrates an encoder-decoder framework with embedded color features, a Retinex exposure correction module, and an exposure fusion module. Within the encoder-decoder, an efficient multiscale attention module is employed to enhance feature representation and capture both short- and long-range pixel dependencies. Multi-scale color information are employed as color features to guide the segmenting of unevenly exposed areas. This approach effectively mitigates uneven exposure levels in low-quality endoscopic images while enriching the overall color information. On the colonoscopic dataset, the Peak Signal-to-Noise Ratio reached 21.06, while on the real nasopharyngeal dataset, the Natural Image Quality Evaluator was only 7.35, and the parameter number of the model is only 0.646 M. These results demonstrate that the EndoUEI significantly enhances the image quality of colonoscopy and nasopharyngoscopy while maintaining a minimal parameter count, thereby holding greater clinical applications.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"112 ","pages":"Article 108825"},"PeriodicalIF":4.9000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving uneven exposure using color characteristics as a priori information in endoscopic images\",\"authors\":\"Yan Wang ,&nbsp;Fa Yang ,&nbsp;Xiaoying Pan ,&nbsp;Hao Wang ,&nbsp;Xiaopan Xu ,&nbsp;Yiran Pan ,&nbsp;Kun Yang ,&nbsp;Ge Ma ,&nbsp;Zhangchao Hao ,&nbsp;Huanxiang Liu ,&nbsp;Peng Yang\",\"doi\":\"10.1016/j.bspc.2025.108825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Endoscopic examinations often encounter color discrepancies in images due to uneven lighting and variations in color temperature of the light source, which directly affect the accuracy of disease screening and diagnosis. Traditional methods for enhancing low-quality endoscopic images primarily concentrate on correcting underexposed images, but do not simultaneously address properly exposed regions or suppress overexposed regions in the image. To address these issues, this study proposes a novel network structure, EndoUEI, which leverages color priors to improve over / underexposure of endoscopic images. The EndoUEI integrates an encoder-decoder framework with embedded color features, a Retinex exposure correction module, and an exposure fusion module. Within the encoder-decoder, an efficient multiscale attention module is employed to enhance feature representation and capture both short- and long-range pixel dependencies. Multi-scale color information are employed as color features to guide the segmenting of unevenly exposed areas. This approach effectively mitigates uneven exposure levels in low-quality endoscopic images while enriching the overall color information. On the colonoscopic dataset, the Peak Signal-to-Noise Ratio reached 21.06, while on the real nasopharyngeal dataset, the Natural Image Quality Evaluator was only 7.35, and the parameter number of the model is only 0.646 M. These results demonstrate that the EndoUEI significantly enhances the image quality of colonoscopy and nasopharyngoscopy while maintaining a minimal parameter count, thereby holding greater clinical applications.</div></div>\",\"PeriodicalId\":55362,\"journal\":{\"name\":\"Biomedical Signal Processing and Control\",\"volume\":\"112 \",\"pages\":\"Article 108825\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Signal Processing and Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1746809425013369\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809425013369","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

内镜检查经常会遇到由于光照不均匀和光源色温变化导致的图像色差,直接影响疾病筛查和诊断的准确性。传统的增强低质量内窥镜图像的方法主要集中在纠正曝光不足的图像,但不能同时处理适当的曝光区域或抑制图像中的过度曝光区域。为了解决这些问题,本研究提出了一种新的网络结构,EndoUEI,它利用颜色先验来改善内窥镜图像的过度/不足曝光。EndoUEI集成了一个带有嵌入式色彩特征的编码器-解码器框架、一个Retinex曝光校正模块和一个曝光融合模块。在编解码器中,采用了高效的多尺度注意模块来增强特征表示,并捕获短、长像素依赖关系。采用多尺度颜色信息作为颜色特征,指导不均匀暴露区域的分割。这种方法有效地减轻了低质量内窥镜图像中不均匀的曝光水平,同时丰富了整体颜色信息。在结肠镜数据集上,峰值信噪比达到21.06,而在真实鼻咽部数据集上,自然图像质量评估器仅为7.35,模型参数数仅为0.646 m。这些结果表明,EndoUEI在保持最小参数数的同时,显著提高了结肠镜和鼻咽镜的图像质量,具有更大的临床应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving uneven exposure using color characteristics as a priori information in endoscopic images
Endoscopic examinations often encounter color discrepancies in images due to uneven lighting and variations in color temperature of the light source, which directly affect the accuracy of disease screening and diagnosis. Traditional methods for enhancing low-quality endoscopic images primarily concentrate on correcting underexposed images, but do not simultaneously address properly exposed regions or suppress overexposed regions in the image. To address these issues, this study proposes a novel network structure, EndoUEI, which leverages color priors to improve over / underexposure of endoscopic images. The EndoUEI integrates an encoder-decoder framework with embedded color features, a Retinex exposure correction module, and an exposure fusion module. Within the encoder-decoder, an efficient multiscale attention module is employed to enhance feature representation and capture both short- and long-range pixel dependencies. Multi-scale color information are employed as color features to guide the segmenting of unevenly exposed areas. This approach effectively mitigates uneven exposure levels in low-quality endoscopic images while enriching the overall color information. On the colonoscopic dataset, the Peak Signal-to-Noise Ratio reached 21.06, while on the real nasopharyngeal dataset, the Natural Image Quality Evaluator was only 7.35, and the parameter number of the model is only 0.646 M. These results demonstrate that the EndoUEI significantly enhances the image quality of colonoscopy and nasopharyngoscopy while maintaining a minimal parameter count, thereby holding greater clinical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Signal Processing and Control
Biomedical Signal Processing and Control 工程技术-工程:生物医学
CiteScore
9.80
自引率
13.70%
发文量
822
审稿时长
4 months
期刊介绍: Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management. Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信